BMJ Open

Sing Your Lungs Out- A community singing group for chronic obstructive pulmonary disease: a one-year pilot study

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014151
Article Type:	Research
Date Submitted by the Author:	06-Sep-2016
Complete List of Authors:	McNaughton, Amanda; Medical Research Institute of New Zealand, Respiratory Medicine; Wellington Hospital, Respiratory Medicine Weatherall, Mark; University of Otago Wellington, Williams, Mathew; Medical Research Institute of New Zealand, McNaughton, Harry; Medical Research Institute of New Zealand Aldington, Sarah; Wellington Hospital, Capital and Coast District Health Board, Emergency Medicine Williams, Gayle; Capital and Coast District Health Board, Community Health Services Beasley, Richard; Medical Research Institute of New Zealand,
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Patient-centred medicine
Keywords:	Chronic Obstructive Pulmonary Disease, Pulmonary Rehabilitation, Singing

SCHOLARONE™ Manuscripts

Amanda McNaughton^{1,2}, Mark Weatherall³, Mathew Williams¹, Harry McNaughton¹, Sarah Aldington^{1,4}, Gayle Williams⁵, Richard Beasley^{1,2}

Corresponding author:

Amanda McNaughton

Medical Research Institute of New Zealand,

Wellington Hospital

Private Bag 7902

Wellington 6021 New Zealand

0064 27 838 6925

amanda.mcnaughton@ccdhb.org.nz

¹ Medical Research Institute of New Zealand, Wellington, New Zealand

² Department of Respiratory Medicine, Capital and Coast District Health Board, Wellington, New Zealand

³ Department of Medicine, University of Otago, Wellington, New Zealand

⁴ Department of Emergency Medicine, Capital and Coast District Health Board, Wellington, New Zealand

⁵ Department of Community Health, Capital and Coast District Health Board, Wellington, New Zealand

ABSTRACT

Objective Singing group participation may benefit patients with chronic obstructive pulmonary disease (COPD). Previous studies are limited by small numbers of participants and short duration of hospital-based singing group intervention. This study examined the feasibility of long-term participation in a community singing group for patients with COPD who had completed pulmonary rehabilitation (PR).

Methods This was a mixed methods pilot study. Patients with COPD who had completed PR were recruited to a new community-based singing group which met weekly for over one year. Measurements at baseline, four months and one year comprised comprehensive pulmonary function tests including lung volumes, six minute walk tests (6MWT), Clinical COPD Questionnaire (CCQ), Hospital Anxiety and Depression Scale (HADS), and hospital admission days for acute exacerbation of COPD (AECOPD) for one year before and after joining singing group. Individual interviews and a focus group provided data for the qualitative assessment which is reported separately.

Findings Of 28 initial participants, 21 completed four-month, and 18 completed one-year assessments The mean attendance was 85.4%. The 6MWT at one year improved by 62.2 (95% CI 26.9 to 97.5) m compared to baseline P=0.002. There was an important reduction in residual volume after four months; 130 (95% CI 3 to 250) ml, P=0.046, and a reduction in the HADS Anxiety Score after one year of 1.1 (95% CI 0.3 to 1.9) points, P=0.009. Mean (SD) hospital admission days for AECOPD were 3.6 (7.9) before, and 2.7 (7.3) after joining the singing group, p=0.40 for the difference.

Conclusions Our findings support the feasibility of long-term participation in a community singing group for breathless adults with COPD and provide evidence of improved exercise capacity and lung function, and a reduction in anxiety.

Strengths and limitations of this study:

- The mixed-methods design of this study provides a broad perspective on a novel intervention.
- The inclusion of an unselected cohort of COPD patients, and the real-world community setting of the singing group supports generalisability of the findings.
- High retention rates with one-year follow-up support the feasibility of this intervention.
- This is the first report of serial lung volume measurements in COPD patients attending a singing group over one year.
- This is a relatively small cohort study.

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

DOUCTION

Chronic obstructive pulmonary disease (COPD), characterised by persistent airflow limitation is usually progressive, is an increasingly common syndrome [1] Common symptoms include assive breathlessness, cough and sputum production as well as anxiety and depression. [2,3] The is breathlessness in COPD is physically limiting and socially isolating, adding further to sistion and anxiety. [4] Current pharmacological options have limited benefits and significant see effects driving the need for cost-effective, non-pharmacological, person-centred, community-limiterventions. [5–8] Pulmonary Rehabilitation (PR) is one of the most effective therapies for the properties of the properties of the search so is how the benefits of PR can be sustained and augmented. [10]

There is a growing interest in the therapeutic potential of singing for COPD. Singing involves atory expansion (using the diaphragm, external intercostal, and accessory muscles), active attention (incremental recruitment of abdominal and internal intercostal muscles) and optimal re. [11] Singing, therefore, has the potential to improve breathing on the phyperinflation.

Everent in psychological wellbeing has been reported in healthy subjects and people with a cylor chronic conditions participating in singing groups. [12–14]

Two randomised controlled trials of singing groups. [12–14]

Two randomised controlled trials of singing groups interventions in COPD report improvements in exist of these studies include small sample sizes and short duration, hospital-based ention. [15–19] Combined with the heterogeneity of disease severity, phenotypes, comorbidities eatment regimens of COPD, the clinical and physiological benefits of singing group participation intervention, is acceptable and sustainable longer term, to an unselected group of COPD patients.

The proper review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml that is usually progressive, is an increasingly common syndrome.[1] Common symptoms include progressive breathlessness, cough and sputum production as well as anxiety and depression. [2,3] The chronic breathlessness in COPD is physically limiting and socially isolating, adding further to depression and anxiety.[4] Current pharmacological options have limited benefits and significant adverse effects driving the need for cost-effective, non-pharmacological, person-centred, communitybased interventions.[5–8] Pulmonary Rehabilitation (PR) is one of the most effective therapies for COPD, improving quality of life, exercise tolerance, and breathlessness.[9] An important research question is how the benefits of PR can be sustained and augmented.[10]

inspiratory expansion (using the diaphragm, external intercostal, and accessory muscles), active exhalation (incremental recruitment of abdominal and internal intercostal muscles) and optimal posture.[11] Singing, therefore, has the potential to improve breathing control and posture, and theoretically to reduce residual volume (RV), which is a manifestation of lung hyperinflation. Improvement in psychological wellbeing has been reported in healthy subjects and people with a variety of chronic conditions participating in singing groups.[12–14]

quality of life and reduction in anxiety, although not in lung function.[15,16], One study examining the effects of adding therapeutic singing to PR programme showed no benefit in quality of life or exercise tolerance, [17] whilst two studies have reported improvement in maximal expiratory pressure. [18,19] The limitations of these studies include small sample sizes and short duration, hospital-based intervention.[15–19] Combined with the heterogeneity of disease severity, phenotypes, comorbidities and treatment regimens of COPD, the clinical and physiological benefits of singing group interventions are likely to have been underestimated. What remains unknown is whether singing group participation as an intervention, is acceptable and sustainable longer term, to an unselected group of COPD patients

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

and whether the benefits can be achieved in real-world conditions. The effects of singing group participation on hyperinflation and lung function in COPD patients also remain unclear.

We are interested in the potential of singing group participation for patients with COPD as a means to sustain the benefits of PR. We wished to study this in real world conditions (amateur singing group facilitator leading free, weekly, sessions in a community hall), particularly looking at lung function including lung volumes, exercise capacity, and wellbeing. The purpose of this mixed methods cohort study was to assess the feasibility of community singing group participation for one year, for breathless patients with COPD who have completed PR. We report here the quantitative results of the study, the qualitative results are reported separately.[20]

This was a prospective cohort study. Patients with COPD or another chronic lung disease, who had completed an eight-week, hospital-based PR programme, and were attending a weekly maintenance community PR exercise class, were invited by the PR nurse to join a new community-based singing group for the purposes of this study. The group was based in Wellington New Zealand. In our institution, patients are enrolled in PR programmes if they have chronic lung disease and a Modified Medical Research Council dyspnoea scale of at least grade 2. We report on those participants with physician-diagnosed COPD based on GOLD criteria.[21] There were no further recruitment restrictions based on age, severity of disease, cognition, singing ability, or co-morbidities. The study was approved by the Wellington Hospital Research Governance Group, and all patients gave written informed consent. The trial was prospectively registered at www.anzctr.org.au, registry number ACTRN12615000736549.

Data collection

Patient demographics, pulmonary function tests, six-minute walk test (6MWT), Hospital Anxiety and Depression Scale (HADS)[22] and the Clinical COPD Questionnaire (CCQ)[23] were measured at baseline, four months and one year after enrolment. Spirometry and lung volumes including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), total lung capacity (TLC), residual volume (RV), functional residual capacity (FRC) and inspiratory capacity (IC) were measured according to ATS/ERS standards (body volume constant plethysmography Masterlab, Erich-Jaeger, Wurzburg, Germany). Reference values were those of the European Community for Coal and Steel (ECCS). Short-acting bronchodilator therapy was withheld for four hours prior to testing, and patients were tested when clinically stable, and not within two weeks of an exacerbation. Six-minute walk testing (6MWT) was performed according to international guidelines [24]

The respiratory scientist performing the pulmonary function tests was blind to the results of previous assessments. Questionnaires were self-completed. Each patient's electronic health record was searched for admissions where the primary discharge code was an acute exacerbation of COPD.

Hospital admission data for acute exacerbation of COPD were recorded for the 12 months before and 12 months after, enrolment.

Singing group intervention

The singing group (Sing Your Lungs Out) met for one hour, weekly, in an urban

community hall, continuously throughout the study period. An amateur singing group facilitator

(SGF) led the group and a PR nurse attended all sessions. Each rehearsal comprised a five
minute warm up session, 35 minutes singing, a five minute warm down and 15 minutes social
morning-tea time. It was run free of charge to patients. The SGF and the group chose the
singing repertoire together, including a wide mix of genres (eg pop, musicals, traditional Maori
songs, folk songs, rounds) with attention to the group's voice range and capacity for phrase
lengths. The SGF also discussed breathing for singing techniques as the year progressed and
as the group gained confidence. No music reading ability was required. We made CD
recordings of songs to allow practice at home. Collaboration with a local boys' high school
developed from student piano accompaniment to working with the senior boys' chorale including
some joint performances. Over the year, the participants delivered six public performances,
supported by the senior chorale from the local school on four occasions.

Analysis

Continuous variables were compared using paired t-tests for most variables. Hospital admission days
were right skew and were compared with a paired Wilcoxon test and Hodges-Lehmann estimator of them

were right skew and were compared with a paired Wilcoxon test and Hodges-Lehmann estimator of the difference. No adjustment has been made for multiple statistical testing. SAS version 9.4 was used.

Twenty-eight participants enrolled in the singing group in five months: October 2014 to February 2015. Five participants withdrew within one month of enrolment due to disinterest or recruitment to another study. Twenty-three (82%) participants attended the singing group for at least one year and had measurements at enrolment and after four months. Twenty participants were reassessed after 12 months: one had undergone lung transplant and two had such frequent exacerbations that stable follow-up testing was not possible. At baseline assessment, twenty-one participants had COPD as defined by GOLD criteria[21] but two participants had normal FEV1/FVC ratio on spirometry with a clinical diagnosis of interstitial lung disease. They continued to attend singing group but are excluded from this analysis. Figure 1 shows the study overview.

The participants with COPD had a wide range of disease severity and comorbidities. Mean (SD) FEV1% at baseline was 60.3 (21.1), median 57.1, range 14.6-110. Six patients (29%) had an FEV1 at baseline of less than one litre. Common comorbidities were bronchiectasis, congestive cardiac failure, diabetes, and obesity. Six of 21 (29%) were Māori, consistent with the higher prevalence of COPD in Māori in New Zealand who constitute only 6% of the total population over 50 years.[25] The mean (SD) attendance rate for the 12 months was 85.4% (12.1). Table 1 shows characteristics of the study population at baseline.

Table 1 Characteristics of the study population

	N=21			
Age years mean (SD)*	68.8 (9.8) range 51 to 91			
Sex n (%)				
Men	8 (38)			
Women	13 (62)			
Ethnicity n (%)				
European	14 (67)			
Maori	6 (29)			
Asian	1 (5)			
Smoking history n (%)				
Current smoker	1 (5)			
Ex-smoker	18 (86)			
Never smoker	2 (10)			
COPD severity ^a n (%)				
BODE score: 0-2	4 (19)			
3-4	8 (38)			
5-6	6 (29)			
7-10	3 (14)			
Continuous long term domiciliary	2 (10)			
oxygen therapy n (%)				
Comorbidities ^b n (%)				
Bronchiectasis	3 (14)			
Heart failure	6 (29)			
Diabetes	7 (33)			
Anxiety on treatment	5 (24)			
Atrial fibrillation	8 (38)			
Ischaemic Heart Disease	5 (24)			
Clinical characteristics *	Mean (SD)	Range		
FEV1 (L)	1.3(0.5)	0.6-2.6		
FEV1 (% predicted)	60.3 (21.1)	14.6-110.3		
FVC (L)	2.85 (0.9)	1.8-4.9		
FVC (%predicted)	103.5 (26.9)	53.4-160.4		
FEV1/FVC	0.47 (0.14)	0.22-0.68		
TLC (L)	6.38 (1.99) 3.57-11.3			
RV (L)	3.39 (1.52)	1.67-8.52		
SpO2 at rest (%)	95.4 (2.3)			
6MWT (m)	299.6 (110.1)	132-508		
BMI (kg/m²)	29.1 (7.6)	20.1-53.0		
Questionnaires*	- (- /			
CCQ	2.11 (0.83)	0.4-3.3		
HADS anxiety	5.8 (2.8)	1-11		
HADS depression	4.1 (2.3)	1-10		
HADS total	9.9 (4.6)	2-21		

a:BODE score- The body-mass index, airflow obstruction, dyspnoea and exercise capacity index in COPD [26] **b** Some participants had multiple comorbidities.

FEV1- forced expiratory volume in one second, FVC- forced vital capacity, TLC- total lung capacity RV-residual volume, SpO2-oxygen saturation measured by a pulse oximeter, 6MWT- six-minute walk test, BMI- body mass index, CCQ- clinical COPD questionnaire, HADS- hospital anxiety and depression score.

Table 2: Changes from baseline in lung function, questionnaires and hospital admission days.

	Mean (SD)			Difference from baseline (95% CI)		
Variable	Baseline	Four months	One year	Four months	One year	
	N=21	N=21	N=18			
FEV1 (L)	1.32 (0.5)	1.34 (0.5)	1.44 (0.5)	0.02 (-0.01 to 0.06)	0.04 (-0.04 to 0.12)	
				P=0.21	P=0.32	
FEV1%	60.3 (21.1)	61.9 (22.3)	64.5 (20.2)	1.6 (-0.1 to 3.4)	2.4 (-1.5 to 6.3)	
				P=0.065	P=0.22	
FVC (L)	2.85 (0.9)	2.81 (0.92)	2.91 (0.97)	-0.04 (-0.15 to 0.06)	-0.03 (-0.16 to 0.10)	
				P=0.38	P=0.65	
FVC%	103.5 (26.9)	103.1 (30.4)	107.0 (24.8)	-0.5 (-4.5 to 3.6)	-0.3 (-5.0 to 4.4)	
				P=0.81	P=0.90	
FEV1/FVC	0.47 (0.14)	0.48 (0.13)	0.50 (0.12)	0.01 (-0.004 to 0.03)	0.01 (-0.003 to 0.03)	
				P=0.13	P=0.10	
TLC (L)	6.38 (1.99)	6.22 (1.86)	6.23 (1.7)	-0.15 (-0.29 to -0.02)	-0.04 (-0.21 to 0.13)	
				P=0.023	P=0.63	
TLC%	117.8 (20.9)	115.2 (20.2)	116.4 (20.8)	-2.6 (-4.8 to -0.4)	-0.7 (-3.6 to 2.2)	
				P=0.021	P=0.62	
RV (L)	3.39 (1.52)	3.27 (1.44)	3.22 (1.18)	-0.13 (-0.25 to -0.003)	0.03 (-0.18 to 0.24)	
				P=0.046	P=0.78	
RV%	156.1 (59.9)	150.2 (57.1)	145.7 (44.1)	-5.9 (-11.5 to -0.3)	-0.1 (-8.9 to 8.8)	
				P=0.04	P=0.99	
IC (L)	2.29 (0.86)	2.35 (0.83)	2.33 (0.87)	0.06 (-0.03 to 0.15)	-0.07 (-0.18 to 0.04)	
				P=0.18	P=0.19	
IC%	107.2 (27.2)	110.1 (25.7)	108.6 (24.3)	3.0 (-1.8 to 7.7)	-2.9 (-9.3 to 3.4)	
				P=0.21	P=0.35	
IC/TLC	0.37 (0.09)	0.39 (0.09)	0.38 (0.09)	0.02 (0.001 to 0.03)	-0.01 (-0.03 to 0.01)	
				P=0.037	P=0.49	
RV/TLC	0.52 (0.09)	0.52 (0.09)	0.52 (0.09)	-0.01 (-0.02 to 0.01)	0.01 (-0.02 to 0.03)	
				P=0.45	P=0.61	
6MWT (m)	299.6 (110.1)	328.0 (118.4)	376.5 (103.6)	28.4 (5.1 to 51.7)	62.2 (26.9 to 97.5)	
				P=0.019	P=0.002	
CCQ	2.11 (0.83)	2.08 (0.86)	2.31 (1.04)	-0.03 (-0.31 to 0.26)	0.27 (-0.04 to 0.57)	
				P=0.84	P=0.09	
HADS	5.8 (2.8)	5.81 (3.52)	4.67 (3.2)	0 (-1.2 to 1.2)	-1.1 (-1.9 to -0.3)	
Anxiety				P=0.99	P=0.009	
HADS	4.1 (2.3)	3.19 (2.56)	4.0 (3.91)	-0.9 (-2.1 to 0.2)	-0.1 (-1.5 to 1.4)	
Depression				P=0.11	P=0.93	

HADS Total	HADS Total 9.9 (4.6) 9.0 (5		5.7)	8.7 (6.4)	-0.9 (-3.0 to 1.2) P=0.37	-1.2 (-2.9 to 0.5) P=0.17
				nonths prior to enrolment	12 months after enrolment	HL estimator (95% CI)
Hospital admission days for AECOPD N=20* Mean (SD)			3.6 (7.9)	2.7 (7.3)	-1.0 (-8.5 to 3.0) P=0.40	

pospital admission days for AECOPD N=20* Mean (SD)

N=20* Mean (SD)

3.6 (7.9)

2.7 (7.3)

P=0.40

Potential residual capacity; IC, inspiratory capacity. Spirometric reference values from European Community for Coal and circCS). Short-acting bronchodilator therapy withheld for four hours before testing, patients were tested when clinically and not within two weeks of an exacerbation. Six-minute walk test (6MWT) performed according to international esc.[24] AECOPD, Acute exacerbation of COPD. * Excluding one patient who had lung transplant between 4 months ear follow-up assessments.

Figure 2 displays individual patient line plots of 6 minute walk test distance of each participant at including for uses a patient with the participation in a weekly community-based singing group for one year is associated with increased exercise capacity, reduced anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety, and improved lung function in a manufacture of the provided anxiety. FEV1, Forced expiratory volume in 1 s; FVC, forced vital capacity; TLC, total lung capacity; RV, residual volume; FRC, functional residual capacity; IC, inspiratory capacity. Spirometric reference values from European Community for Coal and Steel (ECCS). Short-acting bronchodilator therapy withheld for four hours before testing, patients were tested when clinically stable, and not within two weeks of an exacerbation. Six-minute walk test (6MWT) performed according to international guidelines.[24] AECOPD, Acute exacerbation of COPD. * Excluding one patient who had lung transplant between 4 months and 1-year follow-up assessments.

one year is associated with increased exercise capacity, reduced anxiety, and improved lung function in patients with COPD. The high attendance rate over one year, (mean 85.4%), supports the acceptability, feasibility, and enjoyment of this intervention. Factors favouring generalisability of these findings are the broad inclusion criteria, COPD patients recruited from typical public hospital pulmonary rehabilitation service and singing group intervention requiring no special training.

We were surprised by the high long-term attendance rate (mean 85.4%) for this cohort of patients with significant respiratory disease and comorbidities. The qualitative data from this mixed methods study showed that most participants had not been previously interested in singing and considered the singing group a fun social activity more than music practice.[20] The reduction in HADS anxiety scores confirms previous research [15] but this is the first report of statistically and clinically significant improvements in respiratory function and 6MWT with this type of intervention. The mean reduction in HADS anxiety of -1.1 at one year, did not exceed minimal clinically important difference (MCID) of 1.32.[27] The mean increase in 6MWT of 62.2m at one year was greater than the MCID of

related

to text

data mining, Al training,

and similar technologies

30m.[28] The small reduction in RV after four months supports the findings of a previous small study.[19] This is the first report of serial RV measurement in COPD patients attending a singing group over one year. Although the reduction in hospital admission days for AECOPD was not statistically significant, the point estimate was almost one day less per participant in the year attending singing group, compared to the year before starting (excluding the patient who has a lung transplant during the year). If this is a genuine reduction then, at a daily hospital bed day rate of approximately \$NZ800 (GBP400), this represents a saving of \$14080 for this group of 20 patients. The actual cost of running the singing group for 12 months was approximately \$NZ4000. Therefore this low-cost intervention could be potentially be very cost effective.

Strengths of this study, are the inclusion of an unselected cohort of patients with COPD, high retention rates with one-year follow-up, comprehensive pulmonary function tests, and mixed-method

Strengths of this study, are the inclusion of an unselected cohort of patients with COPD, high retention rates with one-year follow-up, comprehensive pulmonary function tests, and mixed-method design in a real world community context. Previously reported studies of singing intervention for COPD have generally been of short duration, none longer than 24 weeks, mostly 6-10 weeks.[15,16,18,19] In contrast to studies using professional singing teachers and physiotherapists, we used amateur singing group facilitators, with musical experience and strong group facilitation skills. Limitations of the study include that the 6MWT was only performed once at each visit, but participants had all done at least two 6MWT as part of their recent PR programmes so any learning effect is likely to have been minimised.[29] All participants received usual medical care; so therapeutic changes may have affected some, but not all, of the participants. This is a relatively small cohort study without a control group so both type I and type II errors are possible.

Our findings are also relevant to the question of sustaining the benefits of pulmonary rehabilitation. All our participants had completed a PR programme- the improvements described here are additional. A possible mechanism for singing group effectiveness is the promotion of physical activity which is considered to be a critical component of PR.[30] Our qualitative data showed that for many patients, attending the weekly singing group was a most enjoyable highlight of their week and often their only outing.[20] Our finding of a reduction in RV after four months, but not 12 months, may

reflect a positive effect of singing on respiratory muscles and expiratory airways pressure that is subsequently overtaken by the natural history of the decline in lung function in COPD. In contrast to other studies[15–18] our singing group intervention focussed on fun group singing with no specific breathing exercises. The impact of breathing exercises alone or in addition to singing remains uncertain.[31] Our group met weekly with singing duration of 35 minutes, and no explicit practice at home. It is possible that there is a dose-response relationship, with increased benefit with more frequent singing group classes and singing practice at home. From our experience, longer classes would not be well tolerated by COPD patients.

Our qualitative analysis showed singing group participation was associated with an increased sense of social connection, purpose and meaningful participation which may, in turn, have ameliorated anxiety.[20] Although there seems to be an association between anxiety in COPD patients, and their health status, the frequency of AECOPD and hospitalisation, it is complex.[32][32][32] However, the reduction in anxiety and increased exercise capacity observed in this study points to the potential for reducing readmissions and supports the use of exercise capacity and readmission for AECOPD, as primary outcome measures for a future randomised controlled trial (RCT).

We believe our results are generalizable because of our broad inclusion criteria, recruitment from a typical hospital PR programme and the use of amateurs for singing group facilitation. We have made available on-line our "10 practical top tips" document for setting up and running a community singing group for people living with COPD. We have been able to sustain this intervention long term, free to patients, as it was set up and financed by a charitable trust. The singing group is still going strong after twenty-two months with high attendance including almost all of the founding members, avoiding the ethical issue of withdrawing the intervention at study completion.

CONCLUSIONS

Our findings support the feasibility of long-term participation in a community singing group for breathless adults with COPD and provide evidence of improvement in lung function and

exercise capacity, and reduction in anxiety. These results can inform sample size and selection of outcome measures for a future RCT. A study of community singing group participation as an alternative to PR for those who decline PR is underway: ACTRN12616000584437. We provide links to two short videos of this singing group and a "10 practical top tips" document for setting up a community singing group for people living with COPD which we hope will inform, motivate and encourage others to set up singing groups.

https://www.dropbox.com/sc/boc5sr7hkcbi6tz/AAAlbUQqOWyvDeJGTnoXVcq-a?preview=NO Graphics 02.mp https://www.youtube.com/watch?v=fduau0jV09o

http://www.mrinz.ac.nz/pdfs/How to set up SYLO.pdf

Acknowledgements We are grateful to Ruth Collingham and Jackie McAuliffe for running the Sing Your Lungs Out Singing Group and to all the patients for their participation.

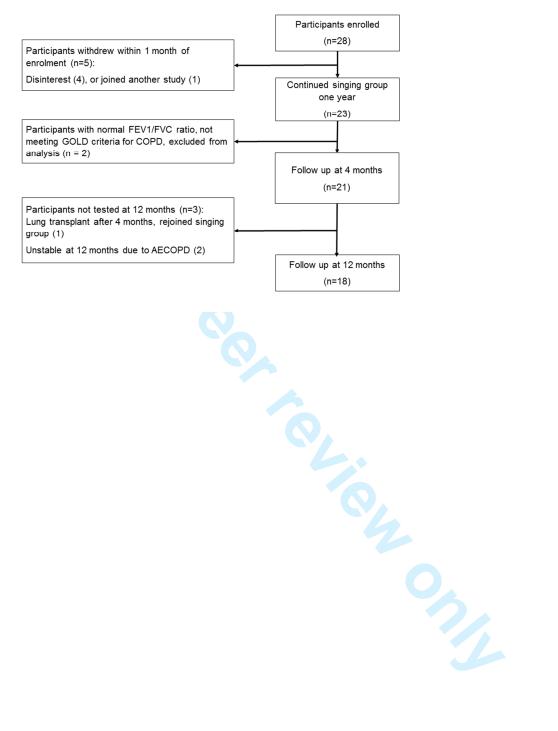
Contributors AM conceived the idea of the study, designed the protocol, wrote the first and final drafts of the manuscript, was the senior investigator, and will act as guarantor, SA, HM, MWi, GW, MWe, RB helped design and plan the study and helped write the first and final drafts of the manuscript. GW, AM recruited patients to the study. MWi, AM collected data. MWe was responsible for the analysis.

Funding This study was supported by the Medical Research Institute of New Zealand. Sing Your Lungs Out is run by the COPD Choir Trust, a volunteer-run registered charity, which received grants in 2015 from the Wellington City Council and Infinity Foundation Community Trust.

Competing interests None

data mining, Al training, and similar technologies Ethics approval This study was approved by the Wellington Hospital Research Governance Group of 23 September 2014

Data sharing No additional data are available


REFERENCES

- 2 Rennard SI, Vestbo J. Natural histories of chronic obstructive pulmonary disease. *Proc Am Thorac Soc* 2008;**5**:878–83. doi:10.1513/pats.200804-035QC
- Yohannes AM, Alexopoulos GS. Depression and anxiety in patients with COPD. *Eur Respir Rev* 2014;**23**:345–9. doi:10.1183/09059180.00007813
- 4 Martinez Rivera C, Costan Galicia J, Alcázar Navarrete B, *et al.* Factors Associated with Depression in COPD: A Multicenter Study. *Lung* 2016;**194**:335–43. doi:10.1007/s00408-016-9862-7
- Kew KM, Dias S, Cates CJ. Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis. In: Kew KM, ed. *Cochrane Database of Systematic Reviews*. Chichester, UK: John Wiley & Sons, Ltd 2014. doi:10.1002/14651858.CD010844.pub2
- NICE. Chronic obstructive pulmonary disease in over 16s: diagnosis and management | Guidance and guidelines | NICE. 2010.https://www.nice.org.uk/guidance/CG101 (accessed 21 Aug2016).
- 7 Agusti A. The path to personalised medicine in COPD. *Thorax* 2014;**69**:857–64. doi:10.1136/thoraxjnl-2014-205507
- 8 Ernst P, Saad N, Suissa S. Inhaled corticosteroids in COPD: the clinical evidence. *Eur Respir J* 2014;:525–37. doi:10.1183/09031936.00128914
- 9 McCarthy B, Casey D, Devane D, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. *Cochrane Database Syst Rev* 2015;**2**:CD003793. doi:10.1002/14651858.CD003793.pub3
- Celli BR, Decramer M, Wedzicha J, *et al.* An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. *Eur Respir J* 2015;**45**:879–905. doi:10.1183/09031936.00009015
- Watson A. Breathing in Singing. In: Welch G, Howard D, Nix J, eds. *The Oxford Handbook of Singing*. Oxford University Press 2014. doi:10.1093/oxfordhb/9780199660773.013.10
- 12 Clift S, Hancox G, Morrison I, *et al.* Choral singing and psychological wellbeing: Quantitative and qualitative findings from English choirs in a cross-national survey. *J Appl Arts Heal* 2010;**1**:19–34.
- Clark I, Harding K. Psychosocial outcomes of active singing interventions for therapeutic purposes: a systematic review of the literature. *Nord J Music Ther* 2012;**21**:80–98. doi:10.1080/08098131.2010.545136
- Reagon C, Gale N, Enright S, *et al.* A mixed-method systematic review to investigate the effect of group singing on health related quality of life. *Complement Ther Med* 2016;**27**:1–11. doi:10.1016/j.ctim.2016.03.017
- Lord VM, Cave P, Hume VJ, *et al.* Singing teaching as a therapy for chronic respiratory disease--a randomised controlled trial and qualitative evaluation. *BMC Pulm Med* 2010;**10**:41. doi:10.1186/1471-2466-10-41

- Lord VM, Hume VJ, Kelly JL, *et al.* Singing classes for chronic obstructive pulmonary disease: a randomized controlled trial. *BMC Pulm Med* 2012;**12**:69. doi:10.1186/1471-2466-12-69
- Goodridge D, Nicol JJ, Horvey KJ, *et al.* Therapeutic Singing as an Adjunct for Pulmonary Rehabilitation Participants With COPD: Outcomes of a Feasibility Study. *Music Med* 2013;**5**:169–76. doi:10.1177/1943862113493012
- Bonilha AG, Onofre F, Vieira ML, et al. Effects of singing classes on pulmonary function and quality of life of COPD patients. Int J COPD 2009;**4**:1–8. doi:10.2147/COPD.S4077
- Pacheco C, Costa A, Amado J, *et al.* Singing in chronic obstructive pulmonary disease patients: A pilot study in Portugal. *Rev Port Pneumol* 2014;**20**:225–8. doi:10.1016/j.rppneu.2014.02.009
- McNaughton A, Aldington S, Williams G, et al. Sing Your Lungs Out: A qualitative study of a community singing group for people with Chronic Obstructive Pulmonary Disease (COPD). BMJ Open 2016;In Press.
- 21 Global Strategy for Diagnosis, Management, and Prevention of COPD 2016 Global Initiative for Chronic Obstructive Lung Disease GOLD. http://goldcopd.org/global-strategy-diagnosis-management-prevention-copd-2016/
- Bjelland I, Dahl A, Haug T, *et al.* The validity of the Hospital Anxiety and Depression Scale: an updated literature review. *J Psychosom* 2002.
- van der Molen T, Willemse BWM, Schokker S, *et al.* Development, validity and responsiveness of the Clinical COPD Questionnaire. *Health Qual Life Outcomes* 2003;**1**:13.
- ATS Statement: Guidelines for the Six-Minute Walk Test. *Am Thorac Soc Am J Respir Crit Care Med* 2002;**166**:111–7. doi:10.1164/rccm.166/1/111
- Ministry of Health New Zealand. District health board Maori health plans profiles and needs assessments. 2015.http://www.health.govt.nz/publication/dhb-maori-health-profiles
- Celli BR, Cote CG, Marin JM, *et al.* The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. *NEJM* 2004;**350**:1005–12. doi:10.1056/NEJMoa021322
- Puhan MA, Frey M, Büchi S, *et al.* The minimal important difference of the hospital anxiety and depression scale in patients with chronic obstructive pulmonary disease. *Health Qual Life Outcomes* 2008;**6**:46. doi:10.1186/1477-7525-6-46
- 28 Holland AE, Nici L. The Return of the Minimum Clinically Important Difference for 6-Minute-Walk Distance in Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med* 2013;**187**:335–6. doi:10.1164/rccm.201212-2191ED
- 29 Holland AE, Spruit MA, Troosters T, *et al.* An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. *Eur Respir J* 2014;**44**:1428–46. doi:10.1183/09031936.00150314
- Spruit MA, Pitta F, McAuley E, *et al.* Pulmonary Rehabilitation and Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med* 2015;**192**:924–33. doi:10.1164/rccm.201505-0929CI

- Holland AE, Hill CJ, Jones AY, et al. Breathing exercises for chronic obstructive

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Pilot in study title.
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Yes
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Yes Introduction para 1-3, pg3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	Yes Introduction para 4, pg 4. No hypotheses, this was a feasibility study.
Methods			
Study design	4	Present key elements of study design early in the paper	Methods, para 1, pg 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Methods, para 1, pg 5 and under 'Singing Group Intervention' pg 6. Specific dates are in first line of Results, pg 7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants	Methods, para 1, pg 5
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	No matched control group
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Methods, 'data collection', pg 5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Methods, 'Data collection', pg 5

Bias	9	Describe any efforts to address potential sources of bias	Objective lung function tests measured by scientist blinded to previous results. Self reported questionnaires
Study size	10	Explain how the study size was arrived at	Convenience sample, twice the size of previous studies.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Methods, 'Analysis', pg 6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Methods, 'Analysis', pg 6
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	N/A
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how	Results, para 1, pg 7 and Figure 1 Study overview
		matching of cases and controls was addressed Cross-sectional study—If applicable, describe	
		analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Results, para 1, pg 7 and Study overview Figure 1
		(b) Give reasons for non-participation at each stage	Results, para 1 and figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Results, para 2, pg 7 and Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	Result, para 1,pg 7
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	Results, para 3, pg 9 and Table 2 and Figure 2
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of	
Main results	16	outcome events or summary measures (a) Give unadjusted estimates and, if	Admission days adjusted. Other

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

		applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of	results unadjusted. Table 2
		relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A feasibility study
Discussion			
Key results	18	Summarise key results with reference to study objectives	Discussion para1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Discussion para 3, pg 12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Discussion para 4 and 5, pg 12-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion para 6, pg 13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Funding statement pg 14

^{*}Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Sing Your Lungs Out- A community singing group for chronic obstructive pulmonary disease: a one-year pilot study

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014151.R1
Article Type:	Research
Date Submitted by the Author:	18-Oct-2016
Complete List of Authors:	McNaughton, Amanda; Medical Research Institute of New Zealand, Respiratory Medicine; Wellington Hospital, Respiratory Medicine Weatherall, Mark; University of Otago Wellington, Williams, Mathew; Medical Research Institute of New Zealand, McNaughton, Harry; Medical Research Institute of New Zealand Aldington, Sarah; Wellington Hospital, Capital and Coast District Health Board, Emergency Medicine Williams, Gayle; Capital and Coast District Health Board, Community Health Services Beasley, Richard; Medical Research Institute of New Zealand,
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Patient-centred medicine
Keywords:	Chronic Obstructive Pulmonary Disease, Pulmonary Rehabilitation, Singing

SCHOLARONE™ Manuscripts

1 2		
3 4	1	Sing Your Lungs Out- A community singing group for chronic obstructive pulmonary
5 6	2	disease: a one-year pilot study
7 8 9	3	Amanda McNaughton ^{1,2} , Mark Weatherall ³ , Mathew Williams ¹ , Harry McNaughton ¹ , Sarah
10 11	4	Aldington ^{1,4} , Gayle Williams ⁵ , Richard Beasley ^{1,2}
12 13 14	5	¹ Medical Research Institute of New Zealand, Wellington, New Zealand
15 16	6	² Department of Respiratory Medicine, Capital and Coast District Health Board, Wellington, New
17 18 19	7	Zealand
20 21 22	8	³ Department of Medicine, University of Otago, Wellington, New Zealand
23 24	9	⁴ Department of Emergency Medicine, Capital and Coast District Health Board, Wellington, New
25 26	10	Zealand
27 28 29	11	⁵ Department of Community Health, Capital and Coast District Health Board, Wellington, New
30 31	12	Zealand
32 33	13	
34 35 36 37	14	Corresponding author:
38 39	15	Amanda McNaughton
40 41 42	16	Medical Research Institute of New Zealand,
43 44 45	17	Medical Research Institute of New Zealand, Wellington Hospital
46 47	18	Private Bag 7902
48 49 50	19	Wellington 6021 New Zealand
51 52	20	0064 27 838 6925
53 54 55	21	amanda.mcnaughton@ccdhb.org.nz
56 57 58	22	

ABSTRACT

Objective Singing group participation may benefit patients with chronic obstructive pulmonary disease (COPD). Previous studies are limited by small numbers of participants and short duration of generally, hospital-based singing group intervention. This study examines the feasibility of long-term participation in a community singing group for patients with COPD who had completed pulmonary rehabilitation (PR). Methods This was a non-experimental cohort study. Patients with COPD who had completed PR were recruited to a new community-based singing group which met weekly for over one year. Measurements at baseline, four months and one year comprised comprehensive pulmonary function tests including lung volumes, six minute walk tests (6MWT), Clinical COPD Questionnaire (CCQ), Hospital Anxiety and Depression Scale (HADS), and hospital admission days for acute exacerbation of COPD (AECOPD) for one year before and after the first singing group session. Findings There were 28 participants with chronic lung disease recruited initially. Five withdrew in the first month. Twenty-one participants meeting GOLD criteria for COPD completed fourmonth, and 18 completed one-year assessments. The mean attendance was 85%. The 6MWT at one year improved by 65 (95% CI 35 to 99) m compared to baseline P<0.001. There was a reduction in residual volume after four months of 130 (95% CI 3 to 250) ml, P=0.046, and a reduction in the HADS Anxiety Score after one year of 0.9 (95% CI 0.1 to 1.8) points, P=0.038. Mean (SD) hospital admission days for AECOPD were 3.6 (7.9) before, and 2.7 (7.3) after

joining the singing group, p=0.40 for the difference.

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Conclusions Our findings support the feasibility of long-term participation in a community
singing group for breathless adults with COPD who have completed PR and provide evidence of
improved exercise capacity and a reduction in anxiety.

Strengths and limitations of this study:

- Broad inclusion criteria and community setting of the singing group supports generalisability of the findings.
- High retention rates with one-year follow-up support the feasibility of this intervention.
- This is the first report of serial lung volume measurements in COPD patients attending a singing group over one year.
- This is a relatively small cohort study.

INTRODUCTION

 that is usually progressive, is an increasingly common syndrome.[1] Common symptoms include progressive breathlessness, cough and sputum production as well as anxiety and depression. [2,3] The chronic breathlessness in COPD is physically limiting and socially isolating, adding further to depression and anxiety.[4] Current pharmacological options have limited benefits and significant adverse effects driving the need for cost-effective, non-pharmacological, person-centred, communitybased interventions.[5–8] Pulmonary Rehabilitation (PR) is one of the most effective therapies for COPD, improving quality of life, exercise tolerance, and breathlessness.[9] An important research question is how the benefits of PR can be sustained and augmented.[10]

inspiratory expansion (using the diaphragm, external intercostal, and accessory muscles), active exhalation (incremental recruitment of abdominal and internal intercostal muscles) and optimal posture.[11] Singing, therefore, has the potential to improve breathing control and posture, and theoretically to reduce residual volume (RV), which is a manifestation of lung hyperinflation. Improvement in psychological wellbeing has been reported in healthy subjects and people with a variety of chronic conditions participating in singing groups.[12–14]

CDUCTION

Chronic obstructive pulmonary disease (COPD), characterised by persistent airflow limitation is usually progressive, is an increasingly common syndrome [1] Common symptoms include assive breathlessness, cough and sputum production as well as anxiety and depression. [2,3] The is breathlessness in COPD is physically limiting and socially isolating, adding further to sistion and anxiety. [4] Current pharmacological options have limited benefits and significant see effects driving the need for cost-effective, non-pharmacological, person-centred, community-limiterventions. [5–8] Pulmonary Rehabilitation (PR) is one of the most effective therapies for the interventions. [5–8] Pulmonary Rehabilitation (PR) is one of the most effective therapies for the proving quality of life, exercise tolerance, and breathlessness. [9] An important research too is how the benefits of PR can be sustained and augmented. [10]

There is a growing interest in the therapeutic potential of singing for COPD. Singing involves atory expansion (using the diaphragm, external intercostal, and accessory muscles), active attention (incremental recruitment of abdominal and internal intercostal muscles) and optimal re. [11] Singing, therefore, has the potential to improve breathing on the posture, and exitally to reduce residual volume (RV), which is a manifestation of lung hyperinflation.

Everment in psychological wellbeing has been reported in healthy subjects and people with a cylor chronic conditions participating in singing groups. [12–14]

Two randomised controlled trials of singing group interventions in COPD report improvements in experimental feasibility study of singing group intervention for people with a cylor chronic conditions participating in singing groups. [12–14]

Two randomised controlled trials of singing group interventions in COPD report improvements in experimental feasibility study of singing group intervention for people with a proper intervention of these studies include small sample sizes and short duration, hosp quality of life and reduction in anxiety, although not in lung function.[15,16], One study examining the effects of adding therapeutic singing to PR programme showed no benefit in quality of life or exercise tolerance, [17] whilst two studies have reported improvement in maximal expiratory pressure. [18,19] The limitations of these studies include small sample sizes and short duration, hospital-based intervention.[15–19] A non-experimental feasibility study of singing group intervention for people with COPD in the United Kingdom recruited 106 people into 6 singing groups, and followed the group for ten months. [20] In that report it was unclear if the participants had participated in PR before the singing intervention. That study reported a 34% attrition rate and small statistically significant differences in St

Georges Respiratory Questionnaire as well as spirometry parameters measured by a portable spirometry device. We wished to explore whether singing group participation as an intervention, is acceptable and sustainable for a longer time period with adequate retention rates, to a broad group of COPD patients who had completed PR and whether the benefits can be achieved in a community Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies setting taking a low-cost, pragmatic approach that might be easily reproducible in other centres comprising amateur singing group facilitator leading free weekly sessions in a community hall. We are interested in the potential of singing group participation for patients with COPD as a means to sustain the benefits of PR. The effects of singing group participation on hyperinflation and lung function in COPD patients remain unclear and we wished to measure both spirometry and lung volumes over a significant time period in singing group participants, looking for any effect on residual volume as well as airflow.

The purpose of this cohort study was to assess the feasibility of community singing group participation for one year, for breathless patients with COPD who have completed PR. We report here the quantitative results of the study, the qualitative results are reported separately.[21]

METHODS

This was a prospective cohort study. Patients with COPD or another chronic lung disease, who had completed an eight-week, hospital-based PR programme, and were attending a weekly maintenance community PR exercise class, were invited by the PR nurse to join a new community-based singing group for the purposes of this study. The group was based in Wellington, New Zealand. In our institution, patients are enrolled in PR programmes if they have chronic lung disease and a Modified Medical Research Council dyspnoea scale of at least grade 2. We report on those participants with physician-diagnosed COPD based on GOLD criteria.[22] There were no further recruitment restrictions based on age, severity of disease, cognition, singing ability, or co-morbidities. The study was approved by the Wellington Hospital Research Governance Group, and all patients gave written informed consent. The trial was registered at www.anzctr.org.au, registry number ACTRN12615000736549.

Data collection

Patient demographics, pulmonary function tests, six-minute walk test (6MWT), Hospital Anxiety and patients of the European Community for Coal and Steel (ECCS). [25] and The European Community for Coal and Steel (ECCS). [25] and Short-acting bronchodilator therapy was withheld for four hours prior to testing, and patients were fested when clinically stable, and not within two weeks of an exacerbation. Six-minute walk test (6MWT) was performed at least one, and mostly two, 6MWT previously as part of their PR programme.

The respiratory scientist performing the pulmonary function tests was masked to the results of previous assessments. Questionnaires were self-completed. Each patient's electronic health record was

searched for admissions where the primary discharge code was an acute exacerbation of COPD. Hospital admission data for acute exacerbation of COPD were recorded for the 12 months before enrolment and 12 months starting from the date of enrolment. PR programme information, the date, sessions attended, and 6MWT results at entry and completion, were obtained from the PR nurse who runs the programme.

Singing group intervention

The singing group (Sing Your Lungs Out) met for one hour, weekly, in an urban community hall, continuously throughout the study period. An amateur singing group facilitator (SGF) led the group and a PR nurse attended all sessions. Each rehearsal comprised a five minute warm up session, 35 minutes singing, a five minute warm down and 15 minutes social morning-tea time. It was run free of charge to patients. The SGF and the group chose the singing repertoire together, including a wide mix of genres (eg pop, musicals, traditional Māori songs, folk songs, rounds) with attention to the group's voice range and capacity for phrase lengths. The SGF also discussed breathing for singing techniques as the year progressed and as the group gained confidence. No music reading ability was required. We made recordings of songs to allow practice at home although this was optional. Collaboration with a local boys' high school developed from student piano accompaniment to working with the senior boys' chorale including some joint performances. Over the year, the participants delivered six public performances, supported by the senior chorale from the local school on four occasions. Singing group members continued to attend maintenance exercise classes as well as singing group.

Analysis

Continuous variables were compared using a mixed linear model for most variables with an unstructured variance-covariance correlation structure. Hospital admission days were right skew and

were compared with a paired Wilcoxon test and Hodges-Lehmann estimator of the difference. Although individual comparisons are presented with 95% confidence intervals a large number of statistical tests have been carried out and this will inflate the Type I error rate. SAS version 9.4 was used.

RESULTS

Twenty-eight participants with chronic lung disease were enrolled in the singing group in five months:

October 2014 to February 2015. The mean (SD) time from completion of past PR was 1.2 (1.2) years.

Response to past PR by the change in 6MWT was available for 14 participants and for these participants the distance had improved from a mean (SD) of 316 (126) m to 356 (148) m. Five participants withdrew within one month of enrolment as they did not wish to continue (n=4) or were recruited into another study (n=1). At baseline assessment, twenty-one participants had COPD as defined by GOLD criteria[22] but two participants had normal FEV1/FVC ratio on spirometry with a clinical diagnosis of interstitial lung disease. They continued to attend singing group but were excluded from this analysis. The 21 participants with COPD attended the singing group for at least one year and had measurements at enrolment and after four months. Eighteen participants were reassessed after 12 months: one had undergone lung transplant and two had such frequent exacerbations that stable follow-up testing was not possible. Figure 1 shows the study overview.

population at baseline.

The participants with COPD had a wide range of disease severity and comorbidities. Mean (SD) FEV1% at baseline was 60.3 (21.1), median 57.1, range 14.6-110. The majority (66%) of participants had moderate COPD by GOLD criteria but 20% had severe or very severe COPD, similar to the proportions of COPD severity in the NZ community.[27] Six patients (29%) had an FEV1 at baseline of less than one litre. Common comorbidities were bronchiectasis, congestive cardiac failure, diabetes, and obesity. Six of 21 (29%) were Māori, consistent with the higher prevalence of COPD in Māori in New Zealand who constitute only 6% of the total population over 50 years.[28] The mean (SD) attendance rate for the 12 months was 85% (12.1). Table 1 shows characteristics of the study

181 Table 1 Characteristics of the study population

	N=21				
Age (years) mean (SD) [range]	68.8 (9.8) [51 to	2 011			
		9 9 1]			
Sex	N/21 (%)				
Men	8 (38)				
Women	13 (62)				
Ethnicity					
European	14 (67)				
Maori	6 (29)				
Asian	1 (5)				
Smoking history					
Current smoker	1 (5)				
Ex-smoker	18 (86)				
Never smoker	2 (10)				
COPD severity (FEV1% predicted)					
≥80% (mild)	3 (14)				
50-79% (moderate)	14 (66)				
30-49% (severe)	2 (10)				
<30% (very severe)	2 (10)				
COPD mortality risk ^a	, ,				
BODE score: 0-2	4 (19)				
3-4	8 (38)				
5-6	6 (29)				
7-10	3 (14)				
Continuous long term domiciliary	2 (10)				
oxygen therapy Comorbidities ^b		A			
Bronchiectasis	3 (14)				
Heart failure	6 (29)				
Diabetes	7 (33)				
Anxiety on treatment	5 (24)				
Atrial fibrillation	8 (38)				
Ischaemic Heart Disease	5 (24)				
logitacimo Floare Diocaco	0 (21)				
Clinical characteristics	Mean (SD)	Median (IQR)	Min to max		
FEV1 (L)	1.3(0.5)	1.3 (0.9 to 1.6)	0.6 to 2.6		
FEV1 (% predicted)	60.3 (21.1)	57.1 (50 to 72.4)	14.6 to 110.3		
FVC (L)	2.85 (0.9)	2.75 (2.2 to 3.0)	1.8 to 4.9		
FVC (L) FVC (%predicted)	103.5 (26.9)	102.5 (85.3 to 126.7)	53.4 to160.4		
FEV1/FVC	0.47 (0.14)	0.47 (0.36 to 0.56)			
	· · · · · ·		0.22 to 0.68		
TLC (L)	6.38 (1.99)	5.68 (5.2 to 7.0)	3.57 to 11.3		
RV (L)	3.39 (1.52)	3.06 (2.6 to 3.4)	1.67 to 8.52		
SpO2 at rest (%)	95.4 (2.3)	96 (93 to 97)	89 to 99		
6MWT (m)	300 (110)	290 (212 to 349)	132 to 508		
BMI (kg/m²)	29.1 (7.6)	28.0 (23.9 to 32.5)	20.1 to 53.0		
Questionnaires	0.44 (0.55)	1045			
CCQ	2.11 (0.83)	1.9 (1.7 to 2.8)	0.4 to 3.3		
HADS anxiety	5.8 (2.8)	6 (4 to 7)	1 to 11		
HADS depression	4.1 (2.3)	3 (3 to 6)	1 to 10		
HADS total	9.9 (4.6)	9 (7 to 12)	2 to 21		

a:BODE score- The body-mass index, airflow obstruction, dyspnoea and exercise capacity index in COPD [29] **b** Some participants had multiple comorbidities.

FEV1- forced expiratory volume in one second, FVC- forced vital capacity, TLC- total lung capacity RV-residual volume, SpO2-oxygen saturation measured by a pulse oximeter, 6MWT- six-minute walk test, BMI- body mass index, CCQ- clinical COPD questionnaire, HADS- hospital anxiety and depression score.

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA

Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

There was strong evidence for an increase in 6MWT after four months, with a mean increase of 28 (95%CI 5 to 52) m, p = 0.019, increasing further to 65 (95%CI 35 to 99) m, p <0.001 at one year. HADS Anxiety scores were lower at one year with a mean change from baseline of -0.9 (95%CI -1.8 to -0.1) p = 0.038. Lung function tests showed a reduction in RV, mean decrease 130 (95%CI -250 to -3) ml, p = 0.046 and total lung capacity, mean decrease 150 (95%CI -290 to -20) ml, p = 0.023 after four months, but no significant differences at 12 months compared to baseline. The questionnaire and clinical measurements, and their changes are shown in Table 2.

	Mean (SD)			Difference from	n baseline (95% CI)
Variable	Baseline	Four months	One year	Four months	One year
	N=21	N=21	N=18		
FEV1 (L)	1.32 (0.5)	1.34 (0.5)	1.44 (0.5)	0.02 (-0.01 to 0.06)	0.04 (-0.05 to 0.12)
				P=0.21	P=0.44
FEV1%	60.3 (21.1)	61.9 (22.3)	64.5 (20.2)	1.6 (-0.1 to 3.4)	2.4 (-1.4 to 6.1)
				P=0.065	P=0.21
FVC (L)	2.85 (0.9)	2.81 (0.92)	2.91 (0.97)	-0.04 (-0.15 to 0.06)	-0.04 (-0.17 to 0.09)
				P=0.38	P=0.50
FVC%	103.5 (26.9)	103.1 (30.4)	107.0 (24.8)	-0.5 (-4.5 to 3.6)	-0.02 (-4.5 to 4.4)
				P=0.81	P=0.99
FEV1/FVC	0.47 (0.14)	0.48 (0.13)	0.50 (0.12)	0.01 (-0.004 to 0.03)	0.02 (-0.002 to 0.03)
				P=0.13	P=0.08
TLC (L)	6.38 (1.99)	6.22 (1.86)	6.23 (1.7)	-0.15 (-0.29 to -0.02)	-0.04 (-0.21 to 0.13)
				P=0.023	P=0.61
TLC%	117.8 (20.9)	115.2 (20.2)	116.4 (20.8)	-2.6 (-4.8 to -0.4)	-0.7 (-3.7 to 2.3)
				P=0.021	P=0.61
RV (L)	3.39 (1.52)	3.27 (1.44)	3.22 (1.18)	-0.13 (-0.25 to -0.003)	0.06 (-0.16 to 0.27)
				P=0.046	P=0.58
RV%	156.1 (59.9)	150.2 (57.1)	145.7 (44.1)	-5.9 (-11.5 to -0.3)	1.3 (-7.8 to 10.3)
				P=0.04	P=0.77
IC (L)	2.29 (0.86)	2.35 (0.83)	2.33 (0.87)	0.06 (-0.03 to 0.15)	-0.07 (-0.18 to 0.04)
				P=0.18	P=0.21
IC%	107.2 (27.2)	110.1 (25.7)	108.6 (24.3)	3.0 (-1.8 to 7.7)	-2.9 (-9.3 to 3.5)
				P=0.21	P=0.35
IC/TLC	0.37 (0.09)	0.39 (0.09)	0.38 (0.09)	0.02 (0.001 to 0.03)	-0.01 (-0.03 to 0.01)
				P=0.037	P=0.36
RV/TLC	0.52 (0.09)	0.52 (0.09)	0.52 (0.09)	-0.01 (-0.02 to 0.01)	0.01 (-0.01 to 0.03)
				P=0.45	P=0.35
6MWT (m)	300 (110)	328 (118)	377 (104)	28 (5 to 52)	65 (35 to 99)
				P=0.019	P<0.001
CCQ	2.11 (0.83)	2.08 (0.86)	2.31 (1.04)	-0.03 (-0.31 to 0.26)	0.26 (-0.04 to 0.57)
				P=0.84	P=0.08
HADS	5.8 (2.8)	5.81 (3.52)	4.67 (3.2)	0 (-1.2 to 1.2)	-0.9 (-1.8 to -0.1)
Anxiety				P=0.99	P=0.038
HADS	4.1 (2.3)	3.19 (2.56)	4.0 (3.91)	-0.9 (-2.1 to 0.2)	0.1 (-1.3 to 1.6)
Depression				P=0.11	P=0.85

related to text and

data mining,

HADS Total 9.9 (4.6) 9.0 (5.7)	8.7 (6.4)	-0.9 (-3.0 to 1.2)	-0.8 (-2.6 to 1.0)	
				P=0.37	P=0.35	
				<u>L</u>	<u>l</u>	1
		12 n	nonths prior to	12 months after	HL estimator (95% CI)	
			enrolment	enrolment	TIL estimator (95% Ci)	
Hospital admission days for AECOPD		2 6 (7.0)		2.7 (7.2)	-1.0 (-8.5 to 3.0)	
N=20* Mean (SD)			3.6 (7.9)	2.7 (7.3)	P=0.40	

dimission days for AECOPD
N=20* Mean (SD)
3.6 (7.9)
2.7 (7.3)
P=0.40

Torced expiratory volume in 1 s; FVC, forced vital capacity; TLC, total lung capacity; RV, residual volume; notional residual capacity; IC, inspiratory capacity. Spirometric reference values from European Community and Steel (ECCS). Short-acting bronchodilator therapy withheld for four hours before testing, patients were when clinically stable, and not within two weeks of an exacerbation. Six-minute walk test (6MWT) performed and to international guidelines.[24] AECOPD, Acute exacerbation of COPD. * Excluding one patient who had an an an an analysis of the stable and 1-year follow-up assessments.

JSSION

In this study participation in a weekly community-based singing group for one year is associated associated and the stable and the st FEV1, Forced expiratory volume in 1 s; FVC, forced vital capacity; TLC, total lung capacity; RV, residual volume; FRC, functional residual capacity; IC, inspiratory capacity. Spirometric reference values from European Community for Coal and Steel (ECCS). Short-acting bronchodilator therapy withheld for four hours before testing, patients were tested when clinically stable, and not within two weeks of an exacerbation. Six-minute walk test (6MWT) performed according to international guidelines.[24] AECOPD, Acute exacerbation of COPD. * Excluding one patient who had lung transplant between 4 months and 1-year follow-up assessments.

DISCUSSION

with increased exercise capacity, reduced anxiety, and improved lung function in patients with COPD who have completed PR. The high attendance rate over one year, (mean 85%), supports the acceptability and feasibility of this intervention. Factors favouring generalisability of these findings are the broad inclusion criteria, COPD patients recruited from typical public hospital pulmonary rehabilitation service and singing group intervention requiring no special training.

, Al training, We were surprised by the high long-term attendance rate, mean 85%, for this cohort of patients with significant respiratory disease and comorbidities, including two participants with very severe and similar technologies COPD, one of whom had a lung transplant four months after joining the singing group. The qualitative data from this project, reported separately, showed that most participants had not been previously interested in singing and considered the singing group a fun social activity more than a musical endeavour.[21] The reduction in HADS anxiety scores confirms previous research [15] but this is the first report of statistically and clinically significant improvements in 6MWT and lung volumes, albeit that the latter were modest and short-term, with this type of intervention.. The mean reduction in HADS anxiety score of 0.9 units at one year, did not exceed the minimal clinically important difference (MCID) of 1.32.[30] The mean increase in 6MWT of 65m at one year was greater than the MCID of 30m.[31]

This is the first report of serial RV measurement in COPD patients attending a singing group over one year. The small reduction in RV after four months supports the findings of a previous small COPD study although in that study lung volumes were measured immediately after singing.[19] Although the reduction in hospital admission days for AECOPD was not statistically significant, the point estimate was almost one day less per participant in the year attending singing group, compared to the year before starting (excluding the patient who has a lung transplant during the year). If this is a genuine reduction then, at a daily hospital bed day rate of approximately \$NZ800 (GBP460), this represents a saving of \$14080 for this group of 20 patients. The actual cost of running the singing group for 12 months was approximately \$NZ4000. Therefore this low-cost intervention could potentially be cost

Strengths of this study are the broad inclusion criteria, high retention rates with one-year followup, comprehensive pulmonary function tests, and pragmatic community context. Previously reported studies of singing intervention for COPD have generally been of short duration, mostly 6-10 weeks.[15,16,18,19] In contrast to studies using professional singing teachers and physiotherapists, we used amateur singing group facilitators, with musical experience and strong group facilitation skills. Our findings confirm those of Morrison and colleagues who showed medium-term (ten months) feasibility for community singing groups for people with COPD in the UK but with a significantly higher attrition rate than we achieved. A significant component of our study was that participants had both completed a PR programme and were enrolled in a weekly maintenance exercise programme. These are likely to be people more motivated to manage their own health and who had already demonstrated an ability to attend weekly sessions. Thus these results can't be readily generalised to a population of people with COPD who have declined or not been offered PR. We believe there may be a role for SG participation for people with COPD who decline PR and have started a controlled study testing this hypothesis (www.anzctr.org.au registry number ACTRN12616000584437). Limitations of our study include that the 6MWT was only performed once at each visit, but participants had all done at least one 6MWT as part

for uses

Our findings are relevant to the question of sustaining the benefits of pulmonary rehabilitation... data mining, Al training, A possible mechanism for singing group effectiveness is the promotion of physical activity which is considered to be a critical component of PR.[33] Our qualitative data showed that for many patients, attending the weekly singing group was a most enjoyable highlight of their week and worth the extra physical activity it took to get there.[21] Our finding of a reduction in RV after four months, but not 12 months, may reflect type I error rate inflation, and so be due to the play of chance. However, if this is a similar tech real result it could reflect a positive effect of singing on respiratory muscles and expiratory airways pressure that is subsequently overtaken by the natural history of the decline in lung function in COPD. In contrast to other studies[15–18] our singing group intervention focussed on fun group singing with no specific breathing exercises. The impact of breathing exercises alone or in addition to singing remains uncertain.[34] Our group met weekly with singing duration of 35 minutes, and no explicit practice at home. It is possible that there is a dose-response relationship, with increased benefit with more frequent singing group classes and singing practice at home. With the very high attendance rate we

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

were not able to attempt an analysis for a dose-response relationship between attendance and outcomes. From our experience, longer classes would not be well tolerated by COPD patients.

Our qualitative analysis showed singing group participation was associated with an increased sense of social connection, purpose and meaningful participation which may explain the reduction in anxiety.[21] Although there seems to be an association between anxiety in COPD patients, their health status, and the frequency of AECOPD and hospitalisation, it is complex.[35] However, the reduction in anxiety and increased exercise capacity observed in this study points to the potential for reducing readmissions and supports the use of exercise capacity and readmission for AECOPD, as primary outcome measures for a future randomised controlled trial (RCT).

We believe our results are generalisable because of our broad inclusion criteria, recruitment from a typical hospital PR programme and the use of amateurs for singing group facilitation. We have made available on-line our "10 practical top tips" document for setting up and running a community singing group for people living with COPD (see online supplement). We have been able to sustain this intervention long term, free to patients, as it was set up and financed by a charitable trust. The singing group is still going strong after twenty-two months with high attendance including almost all of the founding members, avoiding the ethical issue of withdrawing the intervention at study completion.

CONCLUSIONS

Our findings support the feasibility of long-term participation in a community singing group for breathless adults with COPD and provide evidence of improvement in exercise capacity and reduction in anxiety. These results can inform sample size and selection of outcome measures for a future RCT.

Figure legend:

Figure 1: Study overview

299 300 301	exace	= chronic obstructive pulmonary disease, PR= pulmonary rehabilitation, AECOPD = acute rbation of COPD, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, GOLD = I Initiative for Chronic Obstructive Lung Disease					
302	Ackn	owledgements We are grateful to Ruth Collingham and Jackie McAuliffe for running the Sing					
303	Your	Lungs Out Singing Group and to all the patients for their participation.					
304	Cont	Contributors AM conceived the idea of the study, designed the protocol, wrote the first and final drafts					
305	of the	manuscript, was the senior investigator, and will act as guarantor. SA, HM, MWi, GW, MWe, RB					
306	helpe	d design and plan the study and helped write the first and final drafts of the manuscript. GW, AM					
307	recru	ited patients to the study. MWi, AM collected data. MWe was responsible for the analysis.					
308	Fund	d design and plan the study and helped write the first and final drafts of the manuscript. GW, AM ited patients to the study. MWi, AM collected data. MWe was responsible for the analysis. ing This study was supported by the Medical Research Institute of New Zealand. Sing Your and Out is run by the COPD Choir Trust, a volunteer-run registered charity, which received grants in					
309	Lung	s Out is run by the COPD Choir Trust, a volunteer-run registered charity, which received grants in ថ្មី					
310	2015	from the Wellington City Council and Infinity Foundation Community Trust.					
311	Competing interests None						
312	Ethics approval This study was approved by the Wellington Hospital Research Governance Group on						
313	23 September 2014						
314	Data sharing No additional data are available						
315		mining, Ai tra					
316		J. AI W					
317	REFE	ERENCES					
318 319	1	Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. <i>Lancet</i> 2007; 370 :765–73. doi:10.1016/S0140-6736(07)61380-4					
320 321	2	Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 2007;370:765–73. doi:10.1016/S0140-6736(07)61380-4 Rennard SI, Vestbo J. Natural histories of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2008;5:878–83. doi:10.1513/pats.200804-035QC Yohannes AM, Alexopoulos GS. Depression and anxiety in patients with COPD. Eur Respir Rev 2014;23:345–9. doi:10.1183/09059180.00007813					
322 323	3	Yohannes AM, Alexopoulos GS. Depression and anxiety in patients with COPD. <i>Eur Respir Rev</i> 2014; 23 :345–9. doi:10.1183/09059180.00007813					

REFERENCES

- Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 2007; 370:765-73. doi:10.1016/S0140-6736(07)61380-4
- Rennard SI, Vestbo J. Natural histories of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2008; 5:878–83. doi:10.1513/pats.200804-035QC
- Yohannes AM, Alexopoulos GS. Depression and anxiety in patients with COPD. Eur Respir Rev 2014;**23**:345–9. doi:10.1183/09059180.00007813
- Martinez Rivera C, Costan Galicia J, Alcázar Navarrete B, et al. Factors Associated with Depression in COPD: A Multicenter Study. Lung 2016; 194:335–43. doi:10.1007/s00408-016-9862-7
 - Kew KM, Dias S, Cates CJ. Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis. In: Kew KM, ed. Cochrane Database of Systematic Reviews. Chichester, UK: : John Wiley & Sons, Ltd 2014.

1 2			
3	330		doi:10.1002/14651858.CD010844.pub2
5 6 7 8	331 332 333	6	NICE. Chronic obstructive pulmonary disease in over 16s: diagnosis and management Guidance and guidelines NICE. 2010.https://www.nice.org.uk/guidance/CG101 (accessed 21 Aug2016).
9 10	334 335	7	Agusti A. The path to personalised medicine in COPD. <i>Thorax</i> 2014; 69 :857–64. doi:10.1136/thoraxjnl-2014-205507
11 12 13	336 337	8	Ernst P, Saad N, Suissa S. Inhaled corticosteroids in COPD: the clinical evidence. <i>Eur Respir J</i> 2014;:525–37. doi:10.1183/09031936.00128914
14 15 16 17	338 339 340	9	McCarthy B, Casey D, Devane D, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. <i>Cochrane Database Syst Rev</i> 2015; 2 :CD003793. doi:10.1002/14651858.CD003793.pub3
18 19 20 21	341 342 343	10	Celli BR, Decramer M, Wedzicha J, et al. An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. Eur Respir J 2015;45:879–905. doi:10.1183/09031936.00009015
22 23 24 25	344 345 346	11	Watson A. Breathing in Singing. In: Welch G, Howard D, Nix J, eds. <i>The Oxford Handbook of Singing</i> . Oxford University Press 2014. doi:10.1093/oxfordhb/9780199660773.013.10
26 27 28 29	347 348 349	12	Clift S, Hancox G, Morrison I, et al. Choral singing and psychological wellbeing: Quantitative and qualitative findings from English choirs in a cross-national survey. <i>J Appl Arts Heal</i> 2010;1:19–34.
30 31 32 33	350 351 352	13	Clark I, Harding K. Psychosocial outcomes of active singing interventions for therapeutic purposes: a systematic review of the literature. <i>Nord J Music Ther</i> 2012; 21 :80–98. doi:10.1080/08098131.2010.545136
34 35 36 37	353 354 355	14	Reagon C, Gale N, Enright S, <i>et al.</i> A mixed-method systematic review to investigate the effect of group singing on health related quality of life. <i>Complement Ther Med</i> 2016; 27 :1–11. doi:10.1016/j.ctim.2016.03.017
38 39 40 41	356 357 358	15	Lord VM, Cave P, Hume VJ, <i>et al.</i> Singing teaching as a therapy for chronic respiratory diseasea randomised controlled trial and qualitative evaluation. <i>BMC Pulm Med</i> 2010; 10 :41. doi:10.1186/1471-2466-10-41
42 43 44 45	359 360 361	16	Lord VM, Hume VJ, Kelly JL, <i>et al.</i> Singing classes for chronic obstructive pulmonary disease: a randomized controlled trial. <i>BMC Pulm Med</i> 2012; 12 :69. doi:10.1186/1471-2466-12-69
46 47 48 49	362 363 364	17	Goodridge D, Nicol JJ, Horvey KJ, <i>et al.</i> Therapeutic Singing as an Adjunct for Pulmonary Rehabilitation Participants With COPD: Outcomes of a Feasibility Study. <i>Music Med</i> 2013; 5 :169–76. doi:10.1177/1943862113493012
50 51 52	365 366	18	Bonilha AG, Onofre F, Vieira ML, <i>et al.</i> Effects of singing classes on pulmonary function and quality of life of COPD patients. <i>Int J COPD</i> 2009; 4 :1–8. doi:10.2147/COPD.S4077
53 54 55	367 368 369	19	Pacheco C, Costa A, Amado J, <i>et al.</i> Singing in chronic obstructive pulmonary disease patients: A pilot study in Portugal. <i>Rev Port Pneumol</i> 2014; 20 :225–8. doi:10.1016/j.rppneu.2014.02.009
56 57 58 59	370	20	Morrison I, Clift SM, Page S et al. A UK feasibility study on the value of singing for people

371 372		with Chronic Obstructive Pulmonary Disease (COPD). UNESCO Observatory Multi-Disciplinary Journal in the Arts 2013:3;1-19
373 374 375	21	McNaughton A, Aldington S, Williams G, <i>et al.</i> Sing Your Lungs Out: A qualitative study of a community singing group for people with Chronic Obstructive Pulmonary Disease (COPD). <i>BMJ Open</i> 2016; 6 :e012521 doi:10.1136/bmjopen-2016-012521
376 377 378	22	Global Strategy for Diagnosis, Management, and Prevention of COPD - 2016 - Global Initiative for Chronic Obstructive Lung Disease - GOLD. http://goldcopd.org/global-strategy-diagnosis-management-prevention-copd-2016/
379 380	23	Bjelland I, Dahl A, Haug T, <i>et al.</i> The validity of the Hospital Anxiety and Depression Scale: an updated literature review. <i>J Psychosom Res</i> 2002;52:69-77
381 382 383	24	van der Molen T, Willemse BWM, Schokker S, et al. Development, validity and responsiveness of the Clinical COPD Questionnaire. Health Qual Life Outcomes 2003;1:13.
384 385	25	Clausen JL, Coates AL, Quanjer PH. Measurement of lung volumes in humans: review and recommendations from an ATS/ERS workshop. <i>Eur Respir J</i> 1997;10:1205–6
386 387	26	ATS Statement: Guidelines for the Six-Minute Walk Test. Am Thorac Soc Am J Respir Crit Care Med 2002; 166 :111–7. doi:10.1164/rccm.166/1/111
388 389	27	Shirtcliffe P, Weatherall M, Marsh S, et al. COPD prevalence in a random population survey: a matter of definition. <i>Eur Respir J</i> 2007;30:232–9
390 391	28	Ministry of Health New Zealand. District health board Maori health plans profiles and needs assessments. 2015.http://www.health.govt.nz/publication/dhb-maori-health-profiles
392 393 394	29	Celli BR, Cote CG, Marin JM, <i>et al.</i> The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. <i>NEJM</i> 2004;350:1005–12. doi:10.1056/NEJMoa021322
395 396 397	30	Puhan MA, Frey M, Büchi S, <i>et al.</i> The minimal important difference of the hospital anxiety and depression scale in patients with chronic obstructive pulmonary disease. <i>Health Qual Life Outcomes</i> 2008; 6 :46. doi:10.1186/1477-7525-6-46
398 399 400	31	Holland AE, Nici L. The Return of the Minimum Clinically Important Difference for 6-Minute-Walk Distance in Chronic Obstructive Pulmonary Disease. <i>Am J Respir Crit Care Med</i> 2013; 187 :335–6. doi:10.1164/rccm.201212-2191ED
401 402 403	32	Holland AE, Spruit MA, Troosters T, <i>et al.</i> An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. <i>Eur Respir J</i> 2014; 44 :1428–46. doi:10.1183/09031936.00150314
404 405 406	33	Spruit MA, Pitta F, McAuley E, <i>et al.</i> Pulmonary Rehabilitation and Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. <i>Am J Respir Crit Care Med</i> 2015; 192 :924–33. doi:10.1164/rccm.201505-0929Cl
407 408 409	34	Holland AE, Hill CJ, Jones AY, <i>et al.</i> Breathing exercises for chronic obstructive pulmonary disease. <i>Cochrane Database Syst Rev</i> Published Online First: 2012. doi:10.1002/14651858.CD008250.pub2
410 411	35	Pooler A, Beech R. Examining the relationship between anxiety and depression and exacerbations of COPD which result in hospital admission: a systematic review. <i>Int J</i>

Chron Obs Pulmon Dis 2014;9:315-30.

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA

Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

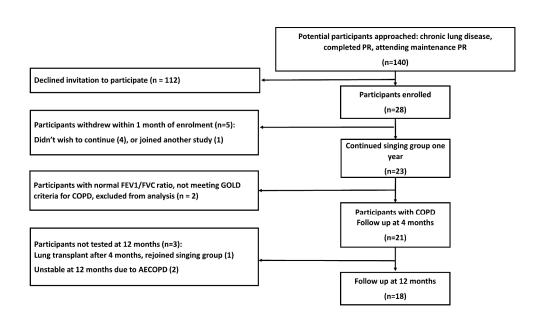


Figure 1: Study overview. COPD = chronic obstructive pulmonary disease, PR= pulmonary rehabilitation, AECOPD = acute exacerbation of COPD, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, GOLD = Global Initiative for Chronic Obstructive Lung Disease

Figure 1 shows the study overv 338x190mm (300 x 300 DPI)

Setting up a singing group like Sing Your Lungs Out

We provide links below to two short videos of this singing group and a '10 practical top tips' document for setting up a community singing group for people living with COPD which we hope will inform, motivate and encourage others to set up singing groups.

https://www.dropbox.com/sc/boc5sr7hkcbi6tz/AAAlbUQqOWyvDeJGTnoXVcg-a?preview=NO_Graphics_02.mp4
https://www.youtube.com/watch?v=fduau0jV09o

http://www.mrinz.ac.nz/pdfs/How to set up SYLO.pdf

en: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Erasmush as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 202

Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. 5 at Department GEZ-LTA

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a	Pilot in study title.
		commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and	Yes
		balanced summary of what was done and what	
		was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale	Yes Introduction para 1-3, pg3-4
		for the investigation being reported	
Objectives	3	State specific objectives, including any	Yes Introduction para 4, pg 4. No
		prespecified hypotheses	hypotheses, this was a feasibility
			study.
Methods			
Study design	4	Present key elements of study design early in	Methods, para 1, pg 5
		the paper	
Setting	5	Describe the setting, locations, and relevant	Methods, para 1, pg 5 and under
		dates, including periods of recruitment,	'Singing Group Intervention' pg 6
		exposure, follow-up, and data collection	Specific dates are in first line of
			Results, pg 7
Participants	6	(a) Cohort study—Give the eligibility criteria,	Methods, para 1, pg 5
		and the sources and methods of selection of	
		participants. Describe methods of follow-up	
		Case-control study—Give the eligibility	
		criteria, and the sources and methods of case	
		ascertainment and control selection. Give the	
		rationale for the choice of cases and controls	
		Cross-sectional study—Give the eligibility	
		criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give	No matched control group
		matching criteria and number of exposed and	
		unexposed	
		Case-control study—For matched studies, give	
		matching criteria and the number of controls	
		per case	
Variables	7	Clearly define all outcomes, exposures,	Methods, 'data collection', pg 5
		predictors, potential confounders, and effect	
		modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of	Methods, 'Data collection', pg 5
measurement		data and details of methods of assessment	7.0
		(measurement). Describe comparability of	
		assessment methods if there is more than one	
		group	

1 2
3 4 5 6 7
6 7 8
9 10
11 12
14 15
16 17 18
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
21 22 23
24 25 26
27 28
29 30 31
31 32 33 34 35 36 37 38
35 36
37 38 39
40 41
42 43 44
45 46 47
48 49
50 51 52
53 54 55
56 57
58 59 60

Bias	9	Describe any efforts to address potential sources of bias	Objective lung function tests measured by scientist blinded to previous results. Self reported questionnaires
Study size	10	Explain how the study size was arrived at	Convenience sample, twice the size of previous studies.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Methods, 'Analysis', pg 6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Methods, 'Analysis', pg 6
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	N/A
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	Results, para 1, pg 7 and Figure 1 Study overview
		Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe	
		analytical methods taking account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Results, para 1, pg 7 and Study overview Figure 1
		(b) Give reasons for non-participation at each stage	Results, para 1 and figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Results, para 2, pg 7 and Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	Result, para 1,pg 7
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	Results, para 3, pg 9 and Table 2 and Figure 2
		Case-control study—Report numbers in each exposure category, or summary measures of exposure Cross-sectional study—Report numbers of cuttoma events or summary measures	
Main results	16	outcome events or summary measures (a) Give unadjusted estimates and, if	Admission days adjusted. Other

		applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	results unadjusted. Table 2 N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A feasibility study
Discussion			
Key results	18	Summarise key results with reference to study objectives	Discussion para1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Discussion para 3, pg 12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Discussion para 4 and 5, pg 12-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion para 6, pg 13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Funding statement pg 14

^{*}Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Sing Your Lungs Out- A community singing group for chronic obstructive pulmonary disease: a one-year pilot study

Journal:	BMJ Open	
Manuscript ID	bmjopen-2016-014151.R2	
Article Type:	Research	
Date Submitted by the Author:	09-Nov-2016	
Complete List of Authors:	McNaughton, Amanda; Medical Research Institute of New Zealand, Respiratory Medicine; Wellington Hospital, Respiratory Medicine Weatherall, Mark; University of Otago Wellington, Williams, Mathew; Medical Research Institute of New Zealand, McNaughton, Harry; Medical Research Institute of New Zealand Aldington, Sarah; Wellington Hospital, Capital and Coast District Health Board, Emergency Medicine Williams, Gayle; Capital and Coast District Health Board, Community Health Services Beasley, Richard; Medical Research Institute of New Zealand,	
Primary Subject Heading :	Respiratory medicine	
Secondary Subject Heading:	Patient-centred medicine	
Keywords:	Chronic Obstructive Pulmonary Disease, Pulmonary Rehabilitation, Singing	

SCHOLARONE™ Manuscripts

1 2		
3	1	Sing Your Lungs Out- A community singing group for chronic obstructive pulmonary
5 6	2	disease: a one-year pilot study
7 8 9	3	Amanda McNaughton ^{1,2} , Mark Weatherall ³ , Mathew Williams ¹ , Harry McNaughton ¹ , Sarah
10 11	4	Aldington ^{1,4} , Gayle Williams ⁵ , Richard Beasley ^{1,2}
12 13 14	5	¹ Medical Research Institute of New Zealand, Wellington, New Zealand
15 16 17	6	² Department of Respiratory Medicine, Capital and Coast District Health Board, Wellington, New
17 18 19	7	Zealand
20 21 22	8	³ Department of Medicine, University of Otago, Wellington, New Zealand
23 24	9	⁴ Department of Emergency Medicine, Capital and Coast District Health Board, Wellington, New
25 26 27	10	Zealand
28 29	11	⁵ Department of Community Health, Capital and Coast District Health Board, Wellington, New
30 31 32	12	Zealand
33 34	13	
35 36 37	14	Corresponding author:
38 39 40	15	Amanda McNaughton
41 42	16	Medical Research Institute of New Zealand,
43 44 45	17	Medical Research Institute of New Zealand, Wellington Hospital
46 47	18	Private Bag 7902
48 49 50	19	Wellington 6021 New Zealand
51 52	20	0064 27 838 6925
53 54 55	21	amanda.mcnaughton@ccdhb.org.nz
56 57	22	

ABSTRACT

- **Objective** Singing group participation may benefit patients with chronic obstructive pulmonary disease (COPD). Previous studies are limited by small numbers of participants and short duration of generally, hospital-based singing group intervention. This study examines the feasibility of long-term participation in a community singing group for patients with COPD who had completed pulmonary rehabilitation (PR).
- Methods This was a feasibility cohort study. Patients with COPD who had completed PR and were enrolled in a weekly community exercise group, were recruited to a new community-based singing group which met weekly for over one year. Measurements at baseline, four months and one year comprised comprehensive pulmonary function tests including lung volumes, six minute walk tests (6MWT), Clinical COPD Questionnaire (CCQ), Hospital Anxiety and Depression Scale (HADS), and hospital admission days for acute exacerbation of COPD (AECOPD) for one year before and after the first singing group session.
- **Findings** There were 28 participants with chronic lung disease recruited from 140 people approached. Five withdrew in the first month. Twenty-one participants meeting GOLD criteria for COPD completed four-month, and 18 completed one-year assessments. The mean attendance was 85%. For the pre-specified primary outcome measure, total HADS score, difference between baseline and 12 months was -0.9, 95% CI -3.0 to 1.2, p = 0.37. Of the secondary measures, a significant reduction was observed for HADS Anxiety Score after one year of -0.9 (95% CI -1.8 to -0.1) points, P=0.038 and an increase in the 6MWT at one year, of 65 (95% CI 35 to 99) m compared to baseline P<0.001.
- **Conclusions** Our findings support the feasibility of long-term participation in a community singing group for breathless adults with COPD who have completed PR and are enrolled in a

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

- weekly community exercise group and provide evidence of improved exercise capacity and a reduction in anxiety.

- **-**4

- 52 Strengths and limitations of this study:
 - High attendance and retention rates over one-year follow-up support the feasibility of this intervention.
 - Recruitment from a typical hospital PR programme and low cost community setting of the singing group supports the practicality and reproducibility of the intervention
 - This is the first report of serial lung volume measurements in COPD patients attending a singing group over one year.
 - This is a relatively small cohort study.

INTRODUCTION

Chronic obstructive pulmonary disease (COPD), characterised by persistent airflow limitation that is usually progressive, is an increasingly common syndrome.[1] Common symptoms include ssive breathlessness, cough and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by provided by properties and sputum production as well as anxiety and depression.[2,3] The protected by production as well as anxiety and depression.[2,3] The protected by providing and socially isolating, adding further to sign and sputum production. [15,16] One study examining the protected by providing for copy is protected by providing for copy intervention and significant and signi progressive breathlessness, cough and sputum production as well as anxiety and depression. [2,3] The chronic breathlessness in COPD is physically limiting and socially isolating, adding further to depression and anxiety.[4] Current pharmacological options have limited benefits and significant adverse effects driving the need for cost-effective, non-pharmacological, person-centred, communitybased interventions.[5–8] Pulmonary Rehabilitation (PR) is one of the most effective therapies for COPD, improving quality of life, exercise tolerance, and breathlessness.[9] An important research question is how the benefits of PR can be sustained and augmented.[10]

inspiratory expansion (using the diaphragm, external intercostal, and accessory muscles), active exhalation (incremental recruitment of abdominal and internal intercostal muscles) and optimal posture.[11] Singing, therefore, has the potential to improve breathing control and posture, and theoretically to reduce residual volume (RV), which is a manifestation of lung hyperinflation. Improvement in psychological wellbeing has been reported in healthy subjects and people with a variety of chronic conditions participating in singing groups.[12–14]

quality of life and reduction in anxiety, although not in lung function.[15,16], One study examining the effects of adding therapeutic singing to PR programme showed no benefit in quality of life or exercise tolerance, [17] whilst two studies have reported improvement in maximal expiratory pressure. [18,19] The limitations of these studies include small sample sizes and short duration.[15–19] A nonexperimental feasibility study of singing group intervention for people with COPD in the United Kingdom recruited 106 people into 6 singing groups, and followed the group for ten months. [20] In that report it was unclear if the participants had participated in PR before the singing intervention. That study reported a 34% attrition rate and small statistically significant differences in St Georges Respiratory

copyright, including for uses related to text and data mining, Al training, and similar technologies

Questionnaire as well as spirometry parameters measured by a portable spirometry device. We wished to explore whether singing group participation as an intervention, is acceptable and sustainable for a longer time period with adequate retention rates, to a broad group of COPD patients who had completed PR and whether the benefits can be achieved in a community setting taking a low-cost, pragmatic approach that might be easily reproducible in other centres. We are interested in the potential of singing group participation for patients with COPD as a means to sustain the benefits of PR. We are also interested in identifying measures sensitive to change during the intervention period and the feasibility of this measurement. The effects of singing group participation on hyperinflation and lung function in COPD patients remain unclear and we wished to measure both spirometry and lung volumes over a significant time period in singing group participants, looking for any effect on residual volume as well as airflow.

The purpose of this cohort study was to assess the feasibility of community singing group participation for one year, for breathless patients with COPD who had completed PR. We report here the quantitative results of the study, the qualitative results are reported separately.[21]

METHODS

This was a prospective feasibility study. Patients with COPD or another chronic lung disease, who had completed an eight-week, hospital-based PR programme, and were enrolled in a weekly community exercise class, were invited by the PR nurse to join a new community-based singing group for the purposes of this study. The group was based in Wellington, New Zealand. In our institution, patients are enrolled in PR programmes if they have chronic lung disease and a Modified Medical Research Council dyspnoea scale of at least grade 2. All patients completing a PR programme are encouraged to enrol in a weekly community exercise class. We report on those participants with physician-diagnosed COPD based on GOLD criteria. [22] There were no further recruitment restrictions based on age, severity of disease, cognition, singing ability, or co-morbidities. The study was approved by the Wellington Hospital Research Governance Group, and all patients gave written informed consent. The trial was registered at www.anzctr.org.au, registry number ACTRN12615000736549.

Data collection

Patient demographics, pulmonary function tests, six-minute walk test (6MWT), Hospital Anxiety and Depression Scale (HADS)[23] and the Clinical COPD Questionnaire (CCQ)[24] were measured at baseline, four months and one year after enrolment. Spirometry and lung volumes including forced expiratory volume in 1s (FEV1), forced vital capacity (FVC), total lung capacity (TLC), residual volume (RV), functional residual capacity (FRC) and inspiratory capacity (IC) were measured according to ATS/ERS standards (body volume constant plethysmography Masterlab, Erich-Jaeger, Wurzburg, and Germany) using the reference values of the European Community for Coal and Steel (ECCS).[25] Short-acting bronchodilator therapy was withheld for four hours prior to testing, and patients were tested when clinically stable, and not within two weeks of an exacerbation. Six-minute walk testing (6MWT) was performed according to international guidelines [26] except that only one test was performed at least one, and mostly two, 6MWT previously as part of their PR programme.

The respiratory scientist performing the pulmonary function tests was masked to the results of previous assessments. Questionnaires were self-completed. Each patient's electronic health record was searched for diagnosis, comorbidities and admissions where the primary discharge code was an acute exacerbation of COPD. Hospital admission data for acute exacerbation of COPD were recorded for the 12 months before enrolment and 12 months starting from the date of enrolment. PR programme information, the date, sessions attended, and 6MWT results at entry and completion, were obtained from the PR nurse who runs the programme.

Singing group intervention

The singing group (Sing Your Lungs Out) met for one hour, weekly, in an urban community hall, continuously throughout the study period. An amateur singing group facilitator (SGF) led the group and a PR nurse attended all sessions. Each rehearsal comprised a five minute warm up session, 35 minutes singing, a five minute warm down and 15 minutes social morning-tea time. It was run free of charge to patients. The SGF and the group chose the singing repertoire together, including a wide mix of genres (eg pop, musicals, traditional Māori songs, folk songs, rounds) with attention to the group's voice range and capacity for phrase lengths. The SGF also discussed breathing for singing techniques as the year progressed and as the group gained confidence. No music reading ability was required. We made recordings of songs to allow practice at home although this was optional. Collaboration with a local boys' high school developed from student piano accompaniment to working with the senior boys' chorale including some joint performances. Over the year, the participants delivered six public performances, supported by the senior chorale from the local school on four occasions. Singing group members remained enrolled in the community exercise classes, as well as singing group.

Analysis

Continuous variables were compared using a mixed linear model for most variables with an unstructured variance-covariance correlation structure. Hospital admission days were right skew and were compared with a paired Wilcoxon test and Hodges-Lehmann estimator of the difference. Although individual comparisons are presented with 95% confidence intervals a large number of statistical tests have been carried out and this will inflate the Type I error rate. SAS version 9.4 was used. were compared with a paired Wilcoxon test and Hodges-Lehmann estimator of the difference. Although

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA Erasmushogeschool .

uses related to text and data mining, Al training,

and similar technologies

copyright, including for

RESULTS

Out of 140 people with chronic lung disease approached, 28 participants (20%) were enrolled in the singing group in five months: October 2014 to February 2015. The mean (SD) time from completion of past PR was 1.2 (1.2) years. Response to past PR by the change in 6MWT was available for 14 participants and for these participants the distance had improved from a mean (SD) of 316 (126) m to 356 (148) m. Five participants withdrew within one month of enrolment as they did not wish to continue (n=4) or were recruited into another study (n=1). At baseline assessment, twenty-one participants had COPD as defined by GOLD criteria[22] but two participants had normal FEV1/FVC ratio on spirometry with a clinical diagnosis of interstitial lung disease. They continued to attend singing group but were excluded from this analysis. The 21 participants with COPD attended the singing group for at least one year and had measurements at enrolment and after four months. Eighteen participants were reassessed after 12 months: one had undergone lung transplant and two had such frequent exacerbations that stable follow-up testing was not possible. Figure 1 shows the study overview.

population at baseline.

The participants with COPD had a wide range of disease severity and comorbidities. Mean (SD) FEV1% at baseline was 60.3 (21.1), median 57.1, range 14.6-110. The majority (66%) of participants had moderate COPD by GOLD criteria but 20% had severe or very severe COPD, similar to the proportions of COPD severity in the NZ community.[27] Six patients (29%) had an FEV1 at baseline of less than one litre. Common comorbidities were bronchiectasis, congestive cardiac failure, diabetes, and obesity. Six of 21 (29%) were Māori, consistent with the higher prevalence of COPD in Māori in New Zealand who constitute only 6% of the total population over 50 years.[28] The mean (SD) attendance rate for the 12 months was 85% (12.1). Table 1 shows characteristics of the study

Table 1 Characteristics of the study population

	N=21				
Ago (yoorg) maan (SD) [range]	68.8 (9.8) [51 to	041			
Age (years) mean (SD) [range] Sex		91]			
Men	8 (38)	N/21 (%)			
Women	13 (62)				
Ethnicity	13 (02)				
European	14 (67)				
Maori	6 (29)				
Asian	1 (5)				
Smoking history	1 (3)				
Current smoker	1 (5)				
Ex-smoker	18 (86)				
Never smoker	2 (10)				
COPD severity (FEV1% predicted)	2 (10)				
≥80% (mild)	3 (14)				
50-79% (moderate)	14 (66)				
30-49% (severe)	2 (10)				
	2 (10)				
<30% (very severe) COPD mortality risk ^a	Z (10)				
BODE score: 0-2	4 (19)				
3-4	8 (38)				
5-6	6 (29)				
7-10	3 (14)				
Continuous long term domiciliary	2 (10)				
oxygen therapy	2 (10)				
Comorbidities ^b					
Bronchiectasis	3 (14)				
Heart failure	6 (29)				
Diabetes	7 (33)				
Anxiety on treatment	5 (24)				
Atrial fibrillation	8 (38)				
Ischaemic Heart Disease	5 (24)				
icondemic Ficure Diocacc	0 (21)				
Clinical characteristics	Mean (SD)	Median (IQR)	Min to max		
FEV1 (L)	1.3(0.5)	1.3 (0.9 to 1.6)	0.6 to 2.6		
FEV1 (% predicted)	60.3 (21.1)	57.1 (50 to 72.4)	14.6 to 110.3		
FVC (L)	2.85 (0.9)	2.75 (2.2 to 3.0)	1.8 to 4.9		
FVC (%predicted)	103.5 (26.9)	102.5 (85.3 to 126.7)	53.4 to160.4		
FEV1/FVC	0.47 (0.14)	0.47 (0.36 to 0.56)	0.22 to 0.68		
TLC (L)	6.38 (1.99)	5.68 (5.2 to 7.0)	3.57 to 11.3		
RV (L)	3.39 (1.52)	3.06 (2.6 to 3.4)	1.67 to 8.52		
SpO2 at rest (%)	95.4 (2.3)	96 (93 to 97)	89 to 99		
6MWT (m)	300 (110)	290 (212 to 349)	132 to 508		
BMI (kg/m²)	29.1 (7.6)	28.0 (23.9 to 32.5)	20.1 to 53.0		
Questionnaires	211 (114)				
CCQ	2.11 (0.83)	1.9 (1.7 to 2.8)	0.4 to 3.3		
HADS anxiety	5.8 (2.8)	6 (4 to 7)	1 to 11		
HADS depression	4.1 (2.3)	3 (3 to 6)	1 to 10		
HADS total	9.9 (4.6)	9 (7 to 12)	2 to 21		
in Do total	3.0 (1.0)	0 (1 10 12)			

a:BODE score- The body-mass index, airflow obstruction, dyspnoea and exercise capacity index in COPD [29] **b** Some participants had multiple comorbidities.

FEV1- forced expiratory volume in one second, FVC- forced vital capacity, TLC- total lung capacity RV-residual volume, SpO2-oxygen saturation measured by a pulse oximeter, 6MWT- six-minute walk test, BMI- body mass index, CCQ- clinical COPD questionnaire, HADS- hospital anxiety and depression score.

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA

Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

There was strong evidence for an increase in 6MWT after four months, with a mean increase of 28 (95%CI 5 to 52) m, p = 0.019, increasing further to 65 (95%CI 35 to 99) m, p <0.001 at one year. HADS Anxiety scores were lower at one year with a mean change from baseline of -0.9 (95%CI -1.8 to -0.1) p = 0.038. Lung function tests showed a reduction in RV, mean decrease 130 (95%CI -250 to -3) ml, p = 0.046 and total lung capacity, mean decrease 150 (95%CI -290 to -20) ml, p = 0.023 after four months, but no significant differences at 12 months compared to baseline. The questionnaire and clinical measurements, and their changes are shown in Table 2.

Table 2: Changes from baseline in lung function, questionnaires and hospital admission days.

		Mean (SD)		Difference from baseline (95% CI)		
Variable	Baseline	Four months	One year	Four months	One year	
	N=21	N=21	N=18			
FEV1 (L)	1.32 (0.5)	1.34 (0.5)	1.44 (0.5)	0.02 (-0.01 to 0.06)	0.04 (-0.05 to 0.12)	
				P=0.21	P=0.44	
FEV1%	60.3 (21.1)	61.9 (22.3)	64.5 (20.2)	1.6 (-0.1 to 3.4)	2.4 (-1.4 to 6.1)	
				P=0.065	P=0.21	
FVC (L)	2.85 (0.9)	2.81 (0.92)	2.91 (0.97)	-0.04 (-0.15 to 0.06)	-0.04 (-0.17 to 0.09)	
				P=0.38	P=0.50	
FVC%	103.5 (26.9)	103.1 (30.4)	107.0 (24.8)	-0.5 (-4.5 to 3.6)	-0.02 (-4.5 to 4.4)	
				P=0.81	P=0.99	
FEV1/FVC	0.47 (0.14)	0.48 (0.13)	0.50 (0.12)	0.01 (-0.004 to 0.03)	0.02 (-0.002 to 0.03)	
				P=0.13	P=0.08	
TLC (L)	6.38 (1.99)	6.22 (1.86)	6.23 (1.7)	-0.15 (-0.29 to -0.02)	-0.04 (-0.21 to 0.13)	
				P=0.023	P=0.61	
TLC%	117.8 (20.9)	115.2 (20.2)	116.4 (20.8)	-2.6 (-4.8 to -0.4)	-0.7 (-3.7 to 2.3)	
		•		P=0.021	P=0.61	
RV (L)	3.39 (1.52)	3.27 (1.44)	3.22 (1.18)	-0.13 (-0.25 to -0.003)	0.06 (-0.16 to 0.27)	
				P=0.046	P=0.58	
RV%	156.1 (59.9)	150.2 (57.1)	145.7 (44.1)	-5.9 (-11.5 to -0.3)	1.3 (-7.8 to 10.3)	
				P=0.04	P=0.77	
IC (L)	2.29 (0.86)	2.35 (0.83)	2.33 (0.87)	0.06 (-0.03 to 0.15)	-0.07 (-0.18 to 0.04)	
				P=0.18	P=0.21	
IC%	107.2 (27.2)	110.1 (25.7)	108.6 (24.3)	3.0 (-1.8 to 7.7)	-2.9 (-9.3 to 3.5)	
				P=0.21	P=0.35	
IC/TLC	0.37 (0.09)	0.39 (0.09)	0.38 (0.09)	0.02 (0.001 to 0.03)	-0.01 (-0.03 to 0.01)	
				P=0.037	P=0.36	
RV/TLC	0.52 (0.09)	0.52 (0.09)	0.52 (0.09)	-0.01 (-0.02 to 0.01)	0.01 (-0.01 to 0.03)	
				P=0.45	P=0.35	
6MWT (m)	300 (110)	328 (118)	377 (104)	28 (5 to 52)	65 (35 to 99)	
				P=0.019	P<0.001	
CCQ	2.11 (0.83)	2.08 (0.86)	2.31 (1.04)	-0.03 (-0.31 to 0.26)	0.26 (-0.04 to 0.57)	
				P=0.84	P=0.08	
HADS	5.8 (2.8)	5.81 (3.52)	4.67 (3.2)	0 (-1.2 to 1.2)	-0.9 (-1.8 to -0.1)	
Anxiety				P=0.99	P=0.038	
HADS	4.1 (2.3)	3.19 (2.56)	4.0 (3.91)	-0.9 (-2.1 to 0.2)	0.1 (-1.3 to 1.6)	
Depression				P=0.11	P=0.85	

Protected by copyright, including for uses

HADS Total	9.9 (4.6)	9.0 (5	5.7)	8.7 (6.4)	-0.9 (-3.0 to 1.2)	-0.8 (-2.6 to 1.0)	
					P=0.37	P=0.35	
<u></u>							
			12 months prior to		12 months after	LII actimator (05% CI)	
				enrolment	enrolment	HL estimator (95% CI)	
Hospital admission days for AECOPD N=20* Mean (SD)			0.0 (7.0)	2.7.(7.2)	-1.0 (-8.5 to 3.0)		
				3.6 (7.9) 2.7 (7.3)		P=0.40	
) FEV1. Ford	ced expiratory vol	ume in 1 s	FVC for	ced vital capacity.	ΓLC, total lung capacity; F	RV residual volume:	

FEV1, Forced expiratory volume in 1 s; FVC, forced vital capacity; TLC, total lung capacity; RV, residual volume; FRC, functional residual capacity; IC, inspiratory capacity. AECOPD, Acute exacerbation of COPD. * Excluding one patient who had lung transplant between 4 months and 1-year follow-up assessments.

DISCUSSION

This study has shown that recruitment and retention of patients with COPD to a community singing group (SG) is feasible. The high attendance rate over one year, mean 85%, supports the acceptability and feasibility of this intervention. In this study, participation in a weekly community-based singing group for one year is associated with increased exercise capacity and reduced anxiety in patients with COPD who have completed PR and are attending a community exercise group.

related to text and data mining, AI training, and similar technologies We were surprised by the high long-term attendance rate, for this cohort of patients with significant respiratory disease and comorbidities, including two participants with very severe COPD, one of whom had a lung transplant four months after joining the singing group. The qualitative data from this project, reported separately, showed that most participants had not been previously interested in singing and considered the singing group a fun social activity more than a musical endeavour.[21] The reduction in HADS anxiety scores confirms previous research [15] but this is the first report of statistically and clinically significant improvement in 6MWT with this type of intervention. The mean reduction in HADS anxiety score of 0.9 units at one year did not exceed the minimal clinically important difference (MCID) of 1.32.[30] The mean increase in 6MWT of 65m at one year was greater than the MCID of 30m.[31] This is the first report of serial RV measurement in COPD patients attending a singing group over one year. The small (130ml) statistically significant reduction in RV after four months

but not 12 months may reflect type I error rate inflation, and so be due to the play of chance. A

previous small COPD study showed a median fall in RV of 270ml in four patients after 10 weeks of singing classes.[19] On the other hand, Bonilha and colleagues did not find any significant change in RV in 15 participants after 24 weeks of singing classes.[18] They did report a small but statistically significant difference in RV two minutes after a short singing session in subjects from the singing group (where RV reduced) and a control group (where RV increased) but no difference between the groups at 30 minutes.[18] Although the reduction in hospital admission days for AECOPD per year was not statistically significant, the point estimate was almost one day less per participant in the year attending singing group, compared to the year before starting (excluding the patient who had a lung transplant during the year). The actual cost of running the singing group for 12 months was approximately \$NZ4,000 (GBP 2,363). Any significant reduction in hospital bed days, even one day per patient per year, as a result of the intervention would likely make this low cost intervention cost effective.

Strengths of this study are the one year duration, high retention rates, comprehensive pulmonary function tests and low-cost community setting. Previously reported studies of singing intervention for COPD have generally been of short duration, mostly 6-10 weeks.[15,16,18,19] In contrast to studies using professional singing teachers and physiotherapists, we used amateur singing group facilitators, with musical experience and strong group facilitation skills. Our findings confirm those Al training, of Morrison and colleagues who showed medium-term (ten months) feasibility for community singing groups for people with COPD in the UK but they had a significantly higher attrition rate. [20] A and similar technologies significant component of our study was that participants had both completed a PR programme and were enrolled in a weekly maintenance exercise programme. These are likely to be people more motivated to manage their own health and who had already demonstrated an ability to attend weekly sessions. It is possible that some of the benefit in reduced hospital admissions could be explained by recent completion of PR.[32] These results can't be readily generalised to a population of people with COPD who have declined or not been offered PR. We believe there may be a role for SG participation for people with COPD who decline PR and have started a controlled study testing this hypothesis (www.anzctr.org.au registry number ACTRN12616000584437). Limitations of our study include that the

ಠ

data mining,

Al training, and similar technologies

Protected by copyright, including

6MWT was only performed once at each visit, but participants had all done at least one 6MWT as part of their recent PR programmes so any learning effect is likely to have been minimised.[33] Singing group members remained enrolled in maintenance exercise classes after PR, as recommended by international guidelines [32]. There is conflicting evidence as to whether maintenance exercise classes preserve the benefits on exercise capacity of PR, but no evidence that maintenance exercise classes improve exercise capacity in people who have completed PR [32]. On average, our participants had been attending exercise classes for approximately one year prior to singing group enrolment and mean 6MWT distance at commencement of singing group was substantially lower than the 6MWT distance at the end of the PR programme for the 14 participants with complete data from the preceding PR programme. This suggests a low likelihood that the substantial improvement in 6MWT distance during 12 months of SG participation could be explained by exercise class attendance alone. The presence of a PR nurse at the singing sessions may have been important. Her role was in 'meeting and greeting' participants, general encouragement to attend, supervising refreshments and organising transport for performances. There was no formal or informal exercise advice provided. In the interviews that formed the qualitative component of this project [21], a key theme was being cared for in a safe environment and the PR nurse presence contributed to this. All participants received usual medical care so therapeutic changes may have affected some, but not all, of the participants. This is a relatively small cohort study without a control group so both type I and type II errors are possible. This analysis also includes a large number of hypothesis tests which inflate the type 1 error rate. Our findings are relevant to the question of sustaining the benefits of pulmonary rehabilitation. A

possible mechanism for singing group effectiveness is the promotion of physical activity which is considered to be a critical component of PR.[34] Our qualitative data showed that for many patients, attending the weekly singing group was a most enjoyable highlight of their week and worth the extra physical activity it took to get there.[21]. In contrast to other studies[15–18] our singing group intervention focussed on fun group singing with no specific breathing exercises. The impact of breathing exercises alone or in addition to singing remains uncertain.[35] Our group met weekly with

singing duration of 35 minutes, and no explicit practice at home. It is possible that there is a dose-response relationship, with increased benefit with more frequent singing group classes and singing practice at home. With the very high attendance rate we were not able to attempt an analysis for a dose-response relationship between attendance and outcomes.

Our qualitative analysis showed singing group participation was associated with an increased sense of social connection, purpose and meaningful participation which may explain the reduction in anxiety.[21] Although there seems to be an association between anxiety in COPD patients, their health status, and the frequency of AECOPD and hospitalisation, it is complex.[36] However, the reduction in anxiety and increased exercise capacity observed in this study points to the potential for reducing readmissions and supports the use of exercise capacity and readmission for AECOPD, as primary outcome measures for a future randomised controlled trial (RCT).

We believe our results could be replicated by others given recruitment from a typical hospital PReprogramme and the practical, low cost approach to running the singing group, including community venue and the use of amateurs for singing group facilitation. We have made available on-line our "10"

We believe our results could be replicated by others given recruitment from a typical hospital PF programme and the practical, low cost approach to running the singing group, including community venue and the use of amateurs for singing group facilitation. We have made available on-line our "10 practical top tips" document for setting up and running a community singing group for people living with COPD (see online supplement). We have been able to sustain this intervention long term, free to patients, as it was set up and financed by a charitable trust. The singing group is still going strong after twenty-four months with high attendance including almost all of the founding members, avoiding the ethical issue of withdrawing the intervention at study completion.

CONCLUSIONS

Our findings support the feasibility of long-term participation in a community singing group for breathless adults with COPD who have completed PR and are enrolled in a weekly community exercise group and provide evidence of improvement in exercise capacity and reduction in anxiety. These results can inform sample size and selection of outcome measures for a future RCT.

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA Erasmushogeschool .

mining

Al training, and similar technologies

301							
302	Figure legend:						
303	Figure 1: Study overview						
304 305 306	COPD = chronic obstructive pulmonary disease, PR= pulmonary rehabilitation, AECOPD = acute exacerbation of COPD, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, GOLD = Global Initiative for Chronic Obstructive Lung Disease Acknowledgements We are grateful to Ruth Collingham and Jackie McAuliffe for running the Sing Your Lungs Out Singing Group and to all the patients for their participation.						
307	Acknowledgements We are grateful to Ruth Collingham and Jackie McAuliffe for running the Sing						
308	Your	Lungs Out Singing Group and to all the patients for their participation.					
309	Cont	ributors AM conceived the idea of the study, designed the protocol, wrote the first and final drafts					
310	of the manuscript, was the senior investigator, and will act as guarantor. SA, HM, MWi, GW, MWe, RB						
311	helped design and plan the study and helped write the first and final drafts of the manuscript. GW, AM ਰ੍ਹ						
312	recruited patients to the study. MWi, AM collected data. MWe was responsible for the analysis.						
313	Funding This study was supported by the Medical Research Institute of New Zealand. Sing Your						
314							
315	Lungs Out is run by the COPD Choir Trust, a volunteer-run registered charity, which received grants in 2015 from the Wellington City Council and Infinity Foundation Community Trust. Competing interests None						
316	Competing interests None						
317	Ethic	s approval This study was approved by the Wellington Hospital Research Governance Group on					
318	23 Se	eptember 2014 sharing No additional data are available					
319	Data sharing No additional data are available						
320		and a					
321							
322	REF	ERENCES					
323 324	1	ERENCES Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. <i>Lancet</i> 2007; 370 :765–73. doi:10.1016/S0140-6736(07)61380-4					
325 326	2	Rennard SI, Vestbo J. Natural histories of chronic obstructive pulmonary disease. <i>Proc Am Thorac Soc</i> 2008; 5 :878–83. doi:10.1513/pats.200804-035QC					
327 328	3	Yohannes AM, Alexopoulos GS. Depression and anxiety in patients with COPD. <i>Eur Respir Rev</i> 2014; 23 :345–9. doi:10.1183/09059180.00007813					

Martinez Rivera C, Costan Galicia J, Alcázar Navarrete B, et al. Factors Associated with

1 2			
3 4 5	330 331		Depression in COPD: A Multicenter Study. <i>Lung</i> 2016; 194 :335–43. doi:10.1007/s00408-016-9862-7
6 7 8 9 10	332 333 334 335	5	Kew KM, Dias S, Cates CJ. Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis. In: Kew KM, ed. <i>Cochrane Database of Systematic Reviews</i> . Chichester, UK: : John Wiley & Sons, Ltd 2014. doi:10.1002/14651858.CD010844.pub2
11 12 13 14	336 337 338	6	NICE. Chronic obstructive pulmonary disease in over 16s: diagnosis and management Guidance and guidelines NICE. 2010.https://www.nice.org.uk/guidance/CG101 (accessed 21 Aug2016).
15 16 17	339 340	7	Agusti A. The path to personalised medicine in COPD. <i>Thorax</i> 2014; 69 :857–64. doi:10.1136/thoraxjnl-2014-205507
18 19	341 342	8	Ernst P, Saad N, Suissa S. Inhaled corticosteroids in COPD: the clinical evidence. <i>Eur Respir J</i> 2014;:525–37. doi:10.1183/09031936.00128914
20 21 22 23	343 344 345	9	McCarthy B, Casey D, Devane D, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. <i>Cochrane Database Syst Rev</i> 2015; 2 :CD003793. doi:10.1002/14651858.CD003793.pub3
24 25 26 27	346 347 348	10	Celli BR, Decramer M, Wedzicha J, et al. An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. Eur Respir J 2015;45:879–905. doi:10.1183/09031936.00009015
28 29 30 31	349 350 351	11	Watson A. Breathing in Singing. In: Welch G, Howard D, Nix J, eds. <i>The Oxford Handbook of Singing</i> . Oxford University Press 2014. doi:10.1093/oxfordhb/9780199660773.013.10
32 33 34 35	352 353 354	12	Clift S, Hancox G, Morrison I, et al. Choral singing and psychological wellbeing: Quantitative and qualitative findings from English choirs in a cross-national survey. <i>J Appl Arts Heal</i> 2010; 1 :19–34.
36 37 38 39	355 356 357	13	Clark I, Harding K. Psychosocial outcomes of active singing interventions for therapeutic purposes: a systematic review of the literature. <i>Nord J Music Ther</i> 2012; 21 :80–98. doi:10.1080/08098131.2010.545136
40 41 42 43	358 359 360	14	Reagon C, Gale N, Enright S, <i>et al.</i> A mixed-method systematic review to investigate the effect of group singing on health related quality of life. <i>Complement Ther Med</i> 2016; 27 :1–11. doi:10.1016/j.ctim.2016.03.017
44 45 46 47	361 362 363	15	Lord VM, Cave P, Hume VJ, <i>et al.</i> Singing teaching as a therapy for chronic respiratory diseasea randomised controlled trial and qualitative evaluation. <i>BMC Pulm Med</i> 2010; 10 :41. doi:10.1186/1471-2466-10-41
48 49 50 51	364 365 366	16	Lord VM, Hume VJ, Kelly JL, <i>et al.</i> Singing classes for chronic obstructive pulmonary disease: a randomized controlled trial. <i>BMC Pulm Med</i> 2012; 12 :69. doi:10.1186/1471-2466-12-69
52 53 54 55	367 368 369	17	Goodridge D, Nicol JJ, Horvey KJ, <i>et al.</i> Therapeutic Singing as an Adjunct for Pulmonary Rehabilitation Participants With COPD: Outcomes of a Feasibility Study. <i>Music Med</i> 2013; 5 :169–76. doi:10.1177/1943862113493012
56 57 58 59	370 371	18	Bonilha AG, Onofre F, Vieira ML, <i>et al.</i> Effects of singing classes on pulmonary function and quality of life of COPD patients. <i>Int J COPD</i> 2009; 4 :1–8. doi:10.2147/COPD.S4077
60			18

1 2			
3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 1 32 33 34 35 36 37 38 39 40 1 42 43 44 45 46 47 48 49 50 51 52 53 54 55 65 75 8	372 373 374	19	Pacheco C, Costa A, Amado J, <i>et al.</i> Singing in chronic obstructive pulmonary disease patients: A pilot study in Portugal. <i>Rev Port Pneumol</i> 2014; 20 :225–8. doi:10.1016/j.rppneu.2014.02.009
	375 376 377	20	Morrison I, Clift SM, Page S et al. A UK feasibility study on the value of singing for people with Chronic Obstructive Pulmonary Disease (COPD). UNESCO Observatory Multi-Disciplinary Journal in the Arts 2013:3;1-19
	378 379 380	21	McNaughton A, Aldington S, Williams G, et al. Sing Your Lungs Out: A qualitative study of a community singing group for people with Chronic Obstructive Pulmonary Disease (COPD). BMJ Open 2016;6:e012521 doi:10.1136/bmjopen-2016-012521
	381 382 383	22	Global Strategy for Diagnosis, Management, and Prevention of COPD - 2016 - Global Initiative for Chronic Obstructive Lung Disease - GOLD. http://goldcopd.org/global-strategy-diagnosis-management-prevention-copd-2016/
	384 385	23	Bjelland I, Dahl A, Haug T, et al. The validity of the Hospital Anxiety and Depression Scale: an updated literature review. J Psychosom Res 2002;52:69-77
	386 387 388	24	van der Molen T, Willemse BWM, Schokker S, et al. Development, validity and responsiveness of the Clinical COPD Questionnaire. Health Qual Life Outcomes 2003;1:13.
	389 390	25	Clausen JL, Coates AL, Quanjer PH. Measurement of lung volumes in humans: review and recommendations from an ATS/ERS workshop. <i>Eur Respir J</i> 1997;10:1205–6
	391 392	26	ATS Statement: Guidelines for the Six-Minute Walk Test. Am Thorac Soc Am J Respir Crit Care Med 2002; 166 :111–7. doi:10.1164/rccm.166/1/111
	393 394	27	Shirtcliffe P, Weatherall M, Marsh S, et al. COPD prevalence in a random population survey: a matter of definition. <i>Eur Respir J</i> 2007;30:232–9
	395 396	28	Ministry of Health New Zealand. District health board Maori health plans profiles and needs assessments. 2015.http://www.health.govt.nz/publication/dhb-maori-health-profiles
	397 398 399	29	Celli BR, Cote CG, Marin JM, <i>et al.</i> The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. <i>NEJM</i> 2004;350:1005–12. doi:10.1056/NEJMoa021322
	400 401 402	30	Puhan MA, Frey M, Büchi S, <i>et al.</i> The minimal important difference of the hospital anxiety and depression scale in patients with chronic obstructive pulmonary disease. <i>Health Qual Life Outcomes</i> 2008; 6 :46. doi:10.1186/1477-7525-6-46
	403 404 405	31	Holland AE, Nici L. The Return of the Minimum Clinically Important Difference for 6-Minute-Walk Distance in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2013;187:335–6. doi:10.1164/rccm.201212-2191ED
	406 407	32	Bolton CE, Bevan-Smith EF, Blakey JD, et al. British Thoracic Society guideline on pulmonary rehabilitation in adults. <i>Thorax</i> 2013;68:ii1–ii30.
	408 409 410	33	Holland AE, Spruit MA, Troosters T, <i>et al.</i> An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. <i>Eur Respir J</i> 2014; 44 :1428–46. doi:10.1183/09031936.00150314
	411 412	34	Spruit MA, Pitta F, McAuley E, <i>et al.</i> Pulmonary Rehabilitation and Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. <i>Am J Respir Crit Care Med</i>

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

2	
3	413
4	713
5	414
6	415
7	416
8	110
9	417
10	418
11	419
12	
13	420
14	

2015;192:924-33. doi:10.1164/rccm.201505-0929CI

Holland AE, Hill CJ, Jones AY, et al. Breathing exercises for chronic obstructive

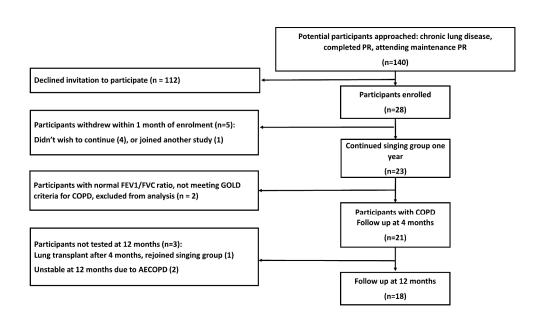


Figure 1: Study overview. COPD = chronic obstructive pulmonary disease, PR= pulmonary rehabilitation, AECOPD = acute exacerbation of COPD, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, GOLD = Global Initiative for Chronic Obstructive Lung Disease

Figure 1 shows the study overv 338x190mm (300 x 300 DPI)

Setting up a singing group like Sing Your Lungs Out

We provide links below to two short videos of this singing group and a '10 practical top tips' document for setting up a community singing group for people living with COPD which we hope will inform, motivate and encourage others to set up singing groups.

https://www.dropbox.com/sc/boc5sr7hkcbi6tz/AAAlbUQqOWyvDeJGTnoXVcg-a?preview=NO_Graphics_02.mp4
https://www.youtube.com/watch?v=fduau0jV09o

http://www.mrinz.ac.nz/pdfs/How to set up SYLO.pdf

en: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Erasmush as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 202

Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. 5 at Department GEZ-LTA

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a	Pilot in study title.
		commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and	Yes
		balanced summary of what was done and what	
		was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale	Yes Introduction para 1-3, pg3-4
		for the investigation being reported	
Objectives	3	State specific objectives, including any	Yes Introduction para 4, pg 4. No
		prespecified hypotheses	hypotheses, this was a feasibility
			study.
Methods			
Study design	4	Present key elements of study design early in	Methods, para 1, pg 5
		the paper	
Setting	5	Describe the setting, locations, and relevant	Methods, para 1, pg 5 and under
		dates, including periods of recruitment,	'Singing Group Intervention' pg 6
		exposure, follow-up, and data collection	Specific dates are in first line of
			Results, pg 7
Participants	6	(a) Cohort study—Give the eligibility criteria,	Methods, para 1, pg 5
		and the sources and methods of selection of	
		participants. Describe methods of follow-up	
		Case-control study—Give the eligibility	
		criteria, and the sources and methods of case	
		ascertainment and control selection. Give the	
		rationale for the choice of cases and controls	
		Cross-sectional study—Give the eligibility	
		criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give	No matched control group
		matching criteria and number of exposed and	
		unexposed	
		Case-control study—For matched studies, give	
		matching criteria and the number of controls	
		per case	
Variables	7	Clearly define all outcomes, exposures,	Methods, 'data collection', pg 5
		predictors, potential confounders, and effect	
		modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of	Methods, 'Data collection', pg 5
measurement		data and details of methods of assessment	7.0
		(measurement). Describe comparability of	
		assessment methods if there is more than one	
		group	

1 2
3 4 5 6 7
6 7 8
9 10
11 12
14 15
16 17 18
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
21 22 23
24 25 26
27 28
29 30 31
31 32 33 34 35 36 37 38
35 36
37 38 39
40 41
42 43 44
45 46 47
48 49
50 51 52
53 54 55
56 57
58 59 60

Bias 9		Describe any efforts to address potential sources of bias	Objective lung function tests measured by scientist blinded to previous results. Self reported questionnaires		
Study size	10	Explain how the study size was arrived at	Convenience sample, twice the size of previous studies.		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Methods, 'Analysis', pg 6		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Methods, 'Analysis', pg 6		
		(b) Describe any methods used to examine subgroups and interactions	N/A		
		(c) Explain how missing data were addressed	N/A		
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	Results, para 1, pg 7 and Figure 1 Study overview		
		Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe			
		analytical methods taking account of sampling strategy			
		(<u>e</u>) Describe any sensitivity analyses	N/A		
Results					
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Results, para 1, pg 7 and Study overview Figure 1		
		(b) Give reasons for non-participation at each stage	Results, para 1 and figure 1		
		(c) Consider use of a flow diagram	Figure 1		
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Results, para 2, pg 7 and Table 1		
		(b) Indicate number of participants with missing data for each variable of interest	Table 1		
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	Result, para 1,pg 7		
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	Results, para 3, pg 9 and Table 2 and Figure 2		
		Case-control study—Report numbers in each exposure category, or summary measures of exposure Cross-sectional study—Report numbers of cuttoma events or summary measures			
Main results	16	outcome events or summary measures (a) Give unadjusted estimates and, if	Admission days adjusted. Other		

		applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	results unadjusted. Table 2 N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A feasibility study
Discussion			
Key results	18	Summarise key results with reference to study objectives	Discussion para1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Discussion para 3, pg 12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Discussion para 4 and 5, pg 12-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion para 6, pg 13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Funding statement pg 14

^{*}Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Sing Your Lungs Out- A community singing group for chronic obstructive pulmonary disease: a one-year pilot study

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014151.R3
Article Type:	Research
Date Submitted by the Author:	29-Nov-2016
Complete List of Authors:	McNaughton, Amanda; Medical Research Institute of New Zealand, Respiratory Medicine; Wellington Hospital, Respiratory Medicine Weatherall, Mark; University of Otago Wellington, Williams, Mathew; Medical Research Institute of New Zealand, McNaughton, Harry; Medical Research Institute of New Zealand Aldington, Sarah; Wellington Hospital, Capital and Coast District Health Board, Emergency Medicine Williams, Gayle; Capital and Coast District Health Board, Community Health Services Beasley, Richard; Medical Research Institute of New Zealand,
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Patient-centred medicine
Keywords:	Chronic Obstructive Pulmonary Disease, Pulmonary Rehabilitation, Singing

SCHOLARONE™ Manuscripts

60

1 2		
3	1	Sing Your Lungs Out- A community singing group for chronic obstructive pulmonary
5 6	2	disease: a one-year pilot study
7 8 9	3	Amanda McNaughton ^{1,2} , Mark Weatherall ³ , Mathew Williams ¹ , Harry McNaughton ¹ , Sarah
10 11	4	Aldington ^{1,4} , Gayle Williams ⁵ , Richard Beasley ^{1,2}
12 13 14	5	¹ Medical Research Institute of New Zealand, Wellington, New Zealand
15 16 17	6	² Department of Respiratory Medicine, Capital and Coast District Health Board, Wellington, New
17 18 19	7	Zealand
20 21 22	8	³ Department of Medicine, University of Otago, Wellington, New Zealand
23 24	9	⁴ Department of Emergency Medicine, Capital and Coast District Health Board, Wellington, New
25 26 27	10	Zealand
28 29	11	⁵ Department of Community Health, Capital and Coast District Health Board, Wellington, New
30 31 32	12	Zealand
33 34	13	
35 36 37	14	Corresponding author:
38 39 40	15	Amanda McNaughton
41 42	16	Medical Research Institute of New Zealand,
43 44 45	17	Medical Research Institute of New Zealand, Wellington Hospital
46 47	18	Private Bag 7902
48 49 50	19	Wellington 6021 New Zealand
51 52	20	0064 27 838 6925
53 54 55	21	amanda.mcnaughton@ccdhb.org.nz
56 57	22	

ABSTRACT

Objective Singing group participation may benefit patients with chronic obstructive pulmonary disease (COPD). Previous studies are limited by small numbers of participants and short duration of generally, hospital-based singing group intervention. This study examines the feasibility of long-term participation in a community singing group for patients with COPD who had completed pulmonary rehabilitation (PR).

Methods This was a feasibility cohort study. Patients with COPD who had completed PR and were enrolled in a weekly community exercise group, were recruited to a new community-based singing group which met weekly for over one year. Measurements at baseline, four months and one year comprised comprehensive pulmonary function tests including lung volumes, six minute walk test (6MWT), Clinical COPD Questionnaire (CCQ), Hospital Anxiety and Depression Scale (HADS), and hospital admission days for acute exacerbation of COPD (AECOPD) for one year before and after the first singing group session.

Findings There were 28 participants with chronic lung disease recruited from 140 people approached. Five withdrew in the first month. Twenty-one participants meeting GOLD criteria for COPD completed four-month, and 18 completed one-year assessments. The mean attendance was 85%. For the pre-specified primary outcome measure, total HADS score, difference between baseline and 12 months was -0.9, 95% CI -3.0 to 1.2, p = 0.37. Of the secondary measures, a significant reduction was observed for HADS Anxiety Score after one year of -0.9 (95% CI -1.8 to -0.1) points, P=0.038 and an increase in the 6MWT at one year, of 65 (95% CI 35 to 99) m compared to baseline P<0.001.

Conclusions Our findings support the feasibility of long-term participation in a community singing group for adults with COPD who have completed PR and are enrolled in a weekly

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

community exercise group and provide evidence of improved exercise capacity and a reduction
in anxiety.

Strengths and limitations of this study:

- High attendance and retention rates over one-year follow-up support the feasibility of this intervention.
- Recruitment from a typical hospital PR programme and low cost community setting of the singing group supports the practicality and reproducibility of the intervention
- This is the first report of serial lung volume measurements in COPD patients attending a singing group over one year.
- This is a relatively small cohort study.

INTRODUCTION

Chronic obstructive pulmonary disease (COPD), characterised by persistent airflow limitation that is usually progressive, is an increasingly common syndrome.[1] Common symptoms include ssive breathlessness, cough and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by properties and sputum production as well as anxiety and depression.[2,3] The protected by provided by properties and sputum production as well as anxiety and depression.[2,3] The protected by production as well as anxiety and depression.[2,3] The protected by providing and socially isolating, adding further to sign and sputum production. [15,16] One study examining the protected by providing for copy is protected by providing for copy intervention and significant and signi progressive breathlessness, cough and sputum production as well as anxiety and depression. [2,3] The chronic breathlessness in COPD is physically limiting and socially isolating, adding further to depression and anxiety.[4] Current pharmacological options have limited benefits and significant adverse effects driving the need for cost-effective, non-pharmacological, person-centred, communitybased interventions.[5–8] Pulmonary Rehabilitation (PR) is one of the most effective therapies for COPD, improving quality of life, exercise tolerance, and breathlessness.[9] An important research question is how the benefits of PR can be sustained and augmented.[10]

inspiratory expansion (using the diaphragm, external intercostal, and accessory muscles), active exhalation (incremental recruitment of abdominal and internal intercostal muscles) and optimal posture.[11] Singing, therefore, has the potential to improve breathing control and posture, and theoretically to reduce residual volume (RV), which is a manifestation of lung hyperinflation. Improvement in psychological wellbeing has been reported in healthy subjects and people with a variety of chronic conditions participating in singing groups.[12–14]

quality of life and reduction in anxiety, although not in lung function.[15,16], One study examining the effects of adding therapeutic singing to PR programme showed no benefit in quality of life or exercise tolerance, [17] whilst two studies have reported improvement in maximal expiratory pressure. [18,19] The limitations of these studies include small sample sizes and short duration.[15–19] A nonexperimental feasibility study of singing group intervention for people with COPD in the United Kingdom recruited 106 people into 6 singing groups, and followed the group for ten months. [20] In that report it was unclear if the participants had participated in PR before the singing intervention. That study reported a 34% attrition rate and small statistically significant differences in St Georges Respiratory

copyright, including for uses related to text and data mining, Al training, and similar technologies

Questionnaire as well as spirometry parameters measured by a portable spirometry device. We wished to explore whether singing group participation as an intervention, is acceptable and sustainable for a longer time period with adequate retention rates, to a broad group of COPD patients who had completed PR and whether the benefits can be achieved in a community setting taking a low-cost, pragmatic approach that might be easily reproducible in other centres. We are interested in the potential of singing group participation for patients with COPD as a means to sustain the benefits of PR. We are also interested in identifying measures sensitive to change during the intervention period and the feasibility of this measurement. The effects of singing group participation on hyperinflation and lung function in COPD patients remain unclear and we wished to measure both spirometry and lung volumes over a significant time period in singing group participants, looking for any effect on residual volume as well as airflow.

The purpose of this cohort study was to assess the feasibility of community singing group participation for one year, for breathless patients with COPD who had completed PR. We report here the quantitative results of the study, the qualitative results are reported separately.[21]

Protected by copyright, including for uses

METHODS

This was a prospective feasibility study. Patients with COPD or another chronic lung disease, who had completed an eight-week, hospital-based PR programme, and were enrolled in a weekly community exercise class, were invited by the PR nurse to join a new community-based singing group for the purposes of this study. The invitation was to the group as a whole and no individual approach was made. The group was based in Wellington, New Zealand. In our institution, patients are enrolled in PR programmes if they have chronic lung disease and a Modified Medical Research Council dyspnoea scale of at least grade 2. All patients completing a PR programme are encouraged to enrol in a weekly community exercise class. We report on those participants with physician-diagnosed COPD based on GOLD criteria.[22] There were no further recruitment restrictions based on age, severity of disease, cognition, singing ability, or co-morbidities. The study was approved by the Wellington Hospital Research Governance Group, and all patients gave written informed consent. The trial was registered at www.anzctr.org.au, registry number ACTRN12615000736549.

Data collection

Patient demographics, pulmonary function tests, six-minute walk test (6MWT), Hospital Anxiety and appears and Depression Scale (HADS)[23] and the Clinical COPD Questionnaire (CCQ)[24] were measured at baseline, four months and one year after enrolment. Spirometry and lung volumes including forced expiratory volume in 1s (FEV1), forced vital capacity (FVC), total lung capacity (TLC), residual volume (RV), functional residual capacity (FRC) and inspiratory capacity (IC) were measured according to ATS/ERS standards (body volume constant plethysmography Masterlab, Erich-Jaeger, Wurzburg, Figure Germany) using the reference values of the European Community for Coal and Steel (ECCS).[25] Short-acting bronchodilator therapy was withheld for four hours prior to testing, and patients were detected when clinically stable, and not within two weeks of an exacerbation. Six-minute walk test (6MWT) was performed according to international guidelines [26] except that only one test was performed at least one, and mostly two, 6MWT previously as part of their PR programme.

The respiratory scientist performing the pulmonary function tests was masked to the results of previous assessments. Questionnaires were self-completed. Each patient's electronic health record was searched for diagnosis, comorbidities and admissions where the primary discharge code was an acute exacerbation of COPD. Hospital admission data for acute exacerbation of COPD were recorded for the 12 months before enrolment and 12 months starting from the date of enrolment. PR programme information, the date, sessions attended, and 6MWT results at entry and completion, were obtained from the PR nurse who runs the programme.

Singing group intervention

The singing group (Sing Your Lungs Out) met for one hour, weekly, in an urban community hall, continuously throughout the study period. An amateur singing group facilitator (SGF) led the group and a PR nurse attended all sessions. Each rehearsal comprised a five minute warm up session, 35 minutes singing, a five minute warm down and 15 minutes social morning-tea time. It was run free of charge to patients. The SGF and the group chose the singing repertoire together, including a wide mix of genres (eg pop, musicals, traditional Māori songs, folk songs, rounds) with attention to the group's voice range and capacity for phrase lengths. The SGF also discussed breathing for singing techniques as the year progressed and as the group gained confidence. No music reading ability was required. We made recordings of songs to allow practice at home although this was optional. Collaboration with a local boys' high school developed from student piano accompaniment to working with the senior boys' chorale including some joint performances. Over the year, the participants delivered six public performances, supported by the senior chorale from the local school on four occasions. Singing group members remained enrolled in the community exercise classes, as well as singing group.

Analysis

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA Erasmushogeschool .

Continuous variables were compared using a mixed linear model for most variables with an unstructured variance-covariance correlation structure. Hospital admission days were right skew and were compared with a paired Wilcoxon test and Hodges-Lehmann estimator of the difference. Although

uses related to text and data mining, Al training,

and similar technologies

copyright, including for

RESULTS

Out of 140 people with chronic lung disease approached, 28 participants (20%) were enrolled in the singing group in five months: October 2014 to February 2015. The mean (SD) time from completion of past PR was 1.2 (1.2) years. Response to past PR by the change in 6MWT was available for 14 participants and for these participants the distance had improved from a mean (SD) of 316 (126) m to 356 (148) m. Five participants withdrew within one month of enrolment as they did not wish to continue (n=4) or were recruited into another study (n=1). At baseline assessment, twenty-one participants had COPD as defined by GOLD criteria[22] but two participants had normal FEV1/FVC ratio on spirometry with a clinical diagnosis of interstitial lung disease. They continued to attend singing group but were excluded from this analysis. The 21 participants with COPD attended the singing group for at least one year and had measurements at enrolment and after four months. Eighteen participants were reassessed after 12 months: one had undergone lung transplant and two had such frequent exacerbations that stable follow-up testing was not possible. Figure 1 shows the study overview.

population at baseline.

The participants with COPD had a wide range of disease severity and comorbidities. Mean (SD) FEV1% at baseline was 60.3 (21.1), median 57.1, range 14.6-110. The majority (66%) of participants had moderate COPD by GOLD criteria but 20% had severe or very severe COPD, similar to the proportions of COPD severity in the NZ community.[27] Six patients (29%) had an FEV1 at baseline of less than one litre. Common comorbidities were bronchiectasis, congestive cardiac failure, diabetes, and obesity. Six of 21 (29%) were Māori, consistent with the higher prevalence of COPD in Māori in New Zealand who constitute only 6% of the total population over 50 years.[28] The mean (SD) attendance rate for the 12 months was 85% (12.1). Table 1 shows characteristics of the study

	T		
	N=21		
Age (years) mean (SD) [range]	68.8 (9.8) [51 to	91]	
Sex	N/21 (%)		
Men	8 (38)		
Women	13 (62)		
Ethnicity			
European	14 (67)		
Maori	6 (29)		
Asian	1 (5)		
Smoking history			
Current smoker	1 (5)		
Ex-smoker	18 (86)		
Never smoker	2 (10)		
COPD severity (FEV1% predicted)	2 (10)		
≥80% (mild)	3 (14)		
50-79% (moderate)	14 (66)		
30-49% (severe)	2 (10)		
<30% (very severe)	2 (10)		
COPD mortality risk ^a	2 (10)		
BODE score: 0-2	4 (10)		
3-4	4 (19) 8 (38)		
5-6	6 (29)		
7-10			
	3 (14)		
Continuous long term domiciliary	2 (10)		
oxygen therapy Comorbidities ^b			
	2 (14)		
Bronchiectasis	3 (14)		
Heart failure	6 (29)		
Diabetes	7 (33)		
Anxiety on treatment	5 (24)		
Atrial fibrillation	8 (38)		
Ischaemic Heart Disease	5 (24)		
Clinical characteristics	Mean (SD)	Median (IQR)	Min to max
FEV1 (L)	1.3(0.5)	1.3 (0.9 to 1.6)	0.6 to 2.6
FEV1 (% predicted)	60.3 (21.1)	57.1 (50 to 72.4)	14.6 to 110.3
FVC (L)	2.85 (0.9)	2.75 (2.2 to 3.0)	1.8 to 4.9
FVC (%predicted)	103.5 (26.9)	102.5 (85.3 to 126.7)	53.4 to160.4
FEV1/FVC	0.47 (0.14)	0.47 (0.36 to 0.56)	0.22 to 0.68
TLC (L)	6.38 (1.99)	5.68 (5.2 to 7.0)	3.57 to 11.3
RV (L)	3.39 (1.52)	3.06 (2.6 to 3.4)	1.67 to 8.52
SpO2 at rest (%)	95.4 (2.3)	96 (93 to 97)	89 to 99
6MWT (m)	300 (110)	290 (212 to 349)	132 to 508
BMI (kg/m ²)	29.1 (7.6)	28.0 (23.9 to 32.5)	20.1 to 53.0
Questionnaires	\	,	
CCQ	2.11 (0.83)	1.9 (1.7 to 2.8)	0.4 to 3.3
HADS anxiety	5.8 (2.8)	6 (4 to 7)	1 to 11
HADS depression	4.1 (2.3)	3 (3 to 6)	1 to 10
HADS total	9.9 (4.6)	9 (7 to 12)	2 to 21
in ibo total	0.0 (1.0)	1 5 (1 15 12)	

a:BODE score- The body-mass index, airflow obstruction, dyspnoea and exercise capacity index in COPD [29] **b** Some participants had multiple comorbidities.

FEV1- forced expiratory volume in one second, FVC- forced vital capacity, TLC- total lung capacity RV-residual volume, SpO2-oxygen saturation measured by a pulse oximeter, 6MWT- six-minute walk test, BMI- body mass index, CCQ- clinical COPD questionnaire, HADS- hospital anxiety and depression score.

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA

Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

There was strong evidence for an increase in 6MWT after four months, with a mean increase of 28 (95%CI 5 to 52) m, p = 0.019, increasing further to 65 (95%CI 35 to 99) m, p <0.001 at one year. HADS Anxiety scores were lower at one year with a mean change from baseline of -0.9 (95%CI -1.8 to -0.1) p = 0.038. Lung function tests showed a reduction in RV, mean decrease 130 (95%CI -250 to -3) ml, p = 0.046 and total lung capacity, mean decrease 150 (95%CI -290 to -20) ml, p = 0.023 after four months, but no significant differences at 12 months compared to baseline. The questionnaire and clinical measurements, and their changes are shown in Table 2.

Table 2: Changes from baseline in lung function, questionnaires and hospital admission days.

	Mean (SD)			Difference from baseline (95% CI)		
Variable	Baseline	Four months	One year	Four months	One year	
	N=21	N=21	N=18			
FEV1 (L)	1.32 (0.5)	1.34 (0.5)	1.44 (0.5)	0.02 (-0.01 to 0.06)	0.04 (-0.05 to 0.12)	
				P=0.21	P=0.44	
FEV1%	60.3 (21.1)	61.9 (22.3)	64.5 (20.2)	1.6 (-0.1 to 3.4)	2.4 (-1.4 to 6.1)	
				P=0.065	P=0.21	
FVC (L)	2.85 (0.9)	2.81 (0.92)	2.91 (0.97)	-0.04 (-0.15 to 0.06)	-0.04 (-0.17 to 0.09)	
				P=0.38	P=0.50	
FVC%	103.5 (26.9)	103.1 (30.4)	107.0 (24.8)	-0.5 (-4.5 to 3.6)	-0.02 (-4.5 to 4.4)	
				P=0.81	P=0.99	
FEV1/FVC	0.47 (0.14)	0.48 (0.13)	0.50 (0.12)	0.01 (-0.004 to 0.03)	0.02 (-0.002 to 0.03)	
				P=0.13	P=0.08	
TLC (L)	6.38 (1.99)	6.22 (1.86)	6.23 (1.7)	-0.15 (-0.29 to -0.02)	-0.04 (-0.21 to 0.13)	
				P=0.023	P=0.61	
TLC%	117.8 (20.9)	115.2 (20.2)	116.4 (20.8)	-2.6 (-4.8 to -0.4)	-0.7 (-3.7 to 2.3)	
		•		P=0.021	P=0.61	
RV (L)	3.39 (1.52)	3.27 (1.44)	3.22 (1.18)	-0.13 (-0.25 to -0.003)	0.06 (-0.16 to 0.27)	
				P=0.046	P=0.58	
RV%	156.1 (59.9)	150.2 (57.1)	145.7 (44.1)	-5.9 (-11.5 to -0.3)	1.3 (-7.8 to 10.3)	
				P=0.04	P=0.77	
IC (L)	2.29 (0.86)	2.35 (0.83)	2.33 (0.87)	0.06 (-0.03 to 0.15)	-0.07 (-0.18 to 0.04)	
				P=0.18	P=0.21	
IC%	107.2 (27.2)	110.1 (25.7)	108.6 (24.3)	3.0 (-1.8 to 7.7)	-2.9 (-9.3 to 3.5)	
				P=0.21	P=0.35	
IC/TLC	0.37 (0.09)	0.39 (0.09)	0.38 (0.09)	0.02 (0.001 to 0.03)	-0.01 (-0.03 to 0.01)	
				P=0.037	P=0.36	
RV/TLC	0.52 (0.09)	0.52 (0.09)	0.52 (0.09)	-0.01 (-0.02 to 0.01)	0.01 (-0.01 to 0.03)	
				P=0.45	P=0.35	
6MWT (m)	300 (110)	328 (118)	377 (104)	28 (5 to 52)	65 (35 to 99)	
				P=0.019	P<0.001	
CCQ	2.11 (0.83)	2.08 (0.86)	2.31 (1.04)	-0.03 (-0.31 to 0.26)	0.26 (-0.04 to 0.57)	
				P=0.84	P=0.08	
HADS	5.8 (2.8)	5.81 (3.52)	4.67 (3.2)	0 (-1.2 to 1.2)	-0.9 (-1.8 to -0.1)	
Anxiety				P=0.99	P=0.04	
HADS	4.1 (2.3)	3.19 (2.56)	4.0 (3.91)	-0.9 (-2.1 to 0.2)	0.1 (-1.3 to 1.6)	
Depression				P=0.11	P=0.85	

Protected by copyright, including for uses related to text

HADS Total	9.9 (4.6)	9.0 (5	.7)	8.7 (6.4)	-0.9 (-3.0 to 1.2)	-0.8 (-2.6 to 1.0)	
					P=0.37	P=0.35	
		1	•				
				onths prior to enrolment	12 months after enrolment	HL estimator (95% CI)	
Hospital admission days for AECOPD N=20* Mean (SD)				3.6 (7.9)	2.7 (7.3)	-1.0 (-8.5 to 3.0) P=0.40	

inspiratory capacity; 6MWT- six-minute walk test, CCQ- clinical COPD questionnaire, HADS- hospital anxiety and depression score. AECOPD, Acute exacerbation of COPD. * Excluding one patient who had lung transplant between 4 months and 1-year follow-up assessments.

DISCUSSION

This study has shown that recruitment and retention of patients with COPD to a community singing group (SG) is feasible. Approximately 20% of people attending a maintenance exercise class following PR accepted the invitation to participate in a new singing group. Recruitment could be increased by individual approaches, repeat approaches and feedback by current participants in the singing group which now has a significant profile in the community. The high attendance rate over one

singing group which now has a significant profile in the community. The high attendance rate over one dead and the significant profile in the community. The high attendance rate over one dead and the significant profile in the community. The high attendance rate over one dead and the significant respiratory disease and comorbidities, including two participants with very severe COPD, one of whom had a lung transplant four months after joining the singing group. The qualitative data from this project, reported separately, showed that most participants had not been previously interested in singing and considered the singing group a fun social activity more than a musical endeavour.[21] in singing and considered the singing group a fun social activity more than a musical endeavour.[21] The reduction in HADS anxiety scores confirms previous research [15] but this is the first report of

statistically and clinically significant improvement in 6MWT with this type of intervention. The mean

BMJ Open: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 2025 at Department GEZ-LTA Erasmushogeschool

reduction in HADS anxiety score of 0.9 units at one year did not exceed the minimal clinically important difference (MCID) of 1.32.[30] The mean increase in 6MWT of 65m at one year was greater than the MCID of 30m.[31] This is the first report of serial RV measurement in COPD patients attending a singing group over one year. The small (130ml) statistically significant reduction in RV after four months but not 12 months may reflect type I error rate inflation, and so be due to the play of chance. A previous small COPD study showed a median fall in RV of 270ml in the four patients able to be tested out of eight patients originally recruited, after 10 weeks of singing classes.[19] On the other hand, Bonilha and colleagues did not find any significant change in RV in 15 participants after 24 weeks of singing classes.[18] They did report a small but statistically significant difference in RV two minutes after a short singing session in subjects from the singing group (where RV reduced) and a control group (where RV increased) but no difference between the groups at 30 minutes.[18] The reduction in hospital admission days for AECOPD per year was not statistically significant, with a point estimate of approximately one day less per participant in the year attending singing group, compared to the year before starting (excluding the patient who had a lung transplant during the year). The actual cost of running the singing group for 12 months was approximately \$NZ4,000 (GBP 2,363). A future study of singing group intervention could include a health economic analysis to assess cost-effectiveness. Strengths of this study are the one year duration, comprehensive pulmonary function tests and

low-cost community setting. Previously reported studies of singing intervention for COPD have generally been of short duration, mostly 6-10 weeks.[15-19] In contrast to studies using professional singing teachers and physiotherapists, we used amateur singing group facilitators, with musical experience and strong group facilitation skills. Limitations of our study include that the 6MWT was only performed once at each visit, but participants had all done at least one 6MWT as part of their recent PR programmes so any learning effect is likely to have been minimised. [32] This is a relatively small cohort study without a control group so both type I and type II errors are possible. This analysis also

includes a large number of hypothesis tests which inflate the type 1 error rate.

Our findings confirm those of Morrison and colleagues who showed medium-term (ten months) feasibility for community singing groups for people with COPD in the UK but they had a significantly higher attrition rate. [20] A significant component of our study was that participants had both completed a PR programme and were enrolled in a weekly maintenance exercise programme. These are likely to be people more motivated to manage their own health and who had already demonstrated an ability to attend weekly sessions. It is possible that some of the benefit in reduced hospital admissions could be copyright, including for uses explained by recent completion of PR.[33] These results can't be readily generalised to a population of people with COPD who have declined or not been offered PR. We believe there may be a role for SG participation for people with COPD who decline PR and have started a controlled study testing this hypothesis (www.anzctr.org.au registry number ACTRN12616000584437). Singing group members remained enrolled in maintenance exercise classes after PR, as recommended by international guidelines.[33] There is conflicting evidence as to whether maintenance exercise classes preserve the benefits on exercise capacity of PR, but no evidence that maintenance exercise classes improve exercise capacity in people who have completed PR.[33] On average, our participants had been attending exercise classes for approximately one year prior to singing group enrolment and mean 6MWT distance at commencement of singing group was substantially lower than the 6MWT distance at Al training the end of the PR programme for the 14 participants with complete data from the preceding PR programme. This suggests a low likelihood that the substantial improvement in 6MWT distance during 12 months of SG participation could be explained by exercise class attendance alone. The presence of ខ្លី a PR nurse at the singing sessions may have been important. Her role was in 'meeting and greeting' participants, general encouragement to attend, supervising refreshments and organising transport for performances. There was no formal or informal exercise advice provided. In the interviews that formed the qualitative component of this project [21], a key theme was being cared for in a safe environment and the PR nurse presence contributed to this. All participants received usual medical care so therapeutic changes may have affected some of the participants.

Our findings are relevant to the question of sustaining the benefits of pulmonary rehabilitation. A possible mechanism for singing group effectiveness is the promotion of physical activity which is considered to be a critical component of PR.[34] Our qualitative data showed that for many patients, attending the weekly singing group was a most enjoyable highlight of their week and worth the extra physical activity it took to get there.[21]. In contrast to other studies[15–18] our singing group intervention focussed on fun group singing with no specific breathing exercises. The impact of breathing exercises alone or in addition to singing remains uncertain.[35] Our group met weekly with singing duration of 35 minutes, and no explicit practice at home. It is possible that there is a dose-response relationship, with increased benefit with more frequent singing group classes and singing practice at home. With the very high attendance rate we were not able to attempt an analysis for a dose-response relationship between attendance and outcomes.

Our qualitative analysis showed singing group participation was associated with an increased sense of social connection, purpose and meaningful participation which may explain the reduction in anxiety.[21] Although there seems to be an association between anxiety in COPD patients, their health status, and the frequency of AECOPD and hospitalisation, it is complex.[36] However, the reduction in anxiety and increased exercise capacity observed in this study points to the potential for reducing readmissions and supports the use of exercise capacity and readmission for AECOPD, as primary outcome measures for a future randomised controlled trial (RCT).

We believe our results could be replicated by others given recruitment from a typical hospital PR programme and the practical, low cost approach to running the singing group, including community venue and the use of amateurs for singing group facilitation. We have made available on-line our "10 practical top tips" document for setting up and running a community singing group for people living with COPD (see online supplement). We have been able to sustain this intervention long term, free to patients, as it was set up and financed by a charitable trust. The singing group is still going strong after twenty-four months with high attendance including almost all of the founding members, avoiding the ethical issue of withdrawing the intervention at study completion.

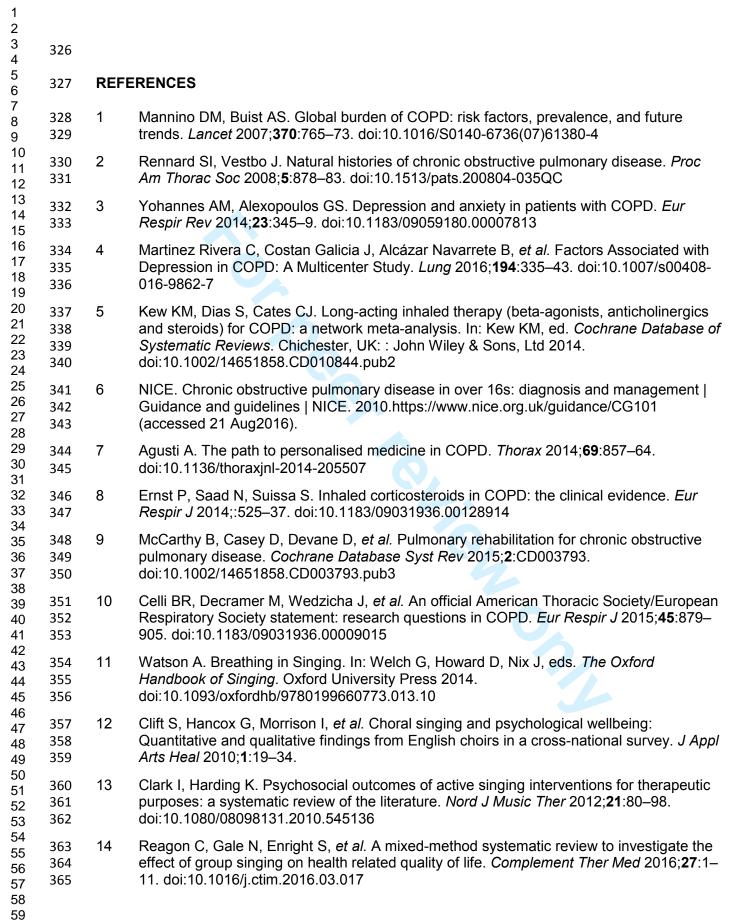
Protected by copyright, including for uses related to text

CO	NC	LU	ISI	О	N٤

Our findings support the feasibility of long-term participation in a community singing group for adults with COPD who have completed PR and are enrolled in a weekly community exercise group and provide evidence of improvement in exercise capacity and reduction in anxiety. These results can inform sample size and selection of outcome measures for a future RCT.

Figure legend:

- Figure 1: Study overview
- COPD = chronic obstructive pulmonary disease, PR= pulmonary rehabilitation, AECOPD = acute
- exacerbation of COPD, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, GOLD =
- Global Initiative for Chronic Obstructive Lung Disease
- Acknowledgements We are grateful to Ruth Collingham and Jackie McAuliffe for running the Sing
- Your Lungs Out Singing Group and to all the patients for their participation.
- Contributors AM conceived the idea of the study, designed the protocol, wrote the first and final drafts
- of the manuscript, was the senior investigator, and will act as guarantor. SA, HM, MWi, GW, MWe, RB
- helped design and plan the study and helped write the first and final drafts of the manuscript. GW, AM recruited patients to the study. MWi, AM collected data. MWe was responsible for the analysis.


 Funding This study was supported by the Medical Research Institute of New Zealand. Sing Your

 Lungs Out is run by the COPD Choir Trust, a volunteer-run registered charity, which received grants in 2015 from the Wellington City Council and Infinity Foundation Community Trust.

 Competing interests None

 Ethics approval This study was approved by the Wellington Hospital Research Governance Group on 100 per page 100 p helped design and plan the study and helped write the first and final drafts of the manuscript. GW, AM

- 23 September 2014
- **Data sharing** No additional data are available

1 2				
3 4 5 6 7 8 9 10 11 12 13 14	366 367 368	15	Lord VM, Cave P, Hume VJ, et al. Singing teaching as a therapy for chronic respiratory diseasea randomised controlled trial and qualitative evaluation. <i>BMC Pulm Med</i> 2010; 10 :41. doi:10.1186/1471-2466-10-41	
	369 370 371	16	Lord VM, Hume VJ, Kelly JL, <i>et al.</i> Singing classes for chronic obstructive pulmonary disease: a randomized controlled trial. <i>BMC Pulm Med</i> 2012; 12 :69. doi:10.1186/1471-2466-12-69	
	372 373 374	17	Goodridge D, Nicol JJ, Horvey KJ, <i>et al.</i> Therapeutic Singing as an Adjunct for Pulmonary Rehabilitation Participants With COPD: Outcomes of a Feasibility Study. <i>Music Med</i> 2013; 5 :169–76. doi:10.1177/1943862113493012	
15 16 17	375 376	18	Bonilha AG, Onofre F, Vieira ML, <i>et al.</i> Effects of singing classes on pulmonary function and quality of life of COPD patients. <i>Int J COPD</i> 2009; 4 :1–8. doi:10.2147/COPD.S4077	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53 53 54 54 54 55 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	377 378 379	19	Pacheco C, Costa A, Amado J, <i>et al.</i> Singing in chronic obstructive pulmonary disease patients: A pilot study in Portugal. <i>Rev Port Pneumol</i> 2014; 20 :225–8. doi:10.1016/j.rppneu.2014.02.009	
	380 381 382	20	Morrison I, Clift SM, Page S et al. A UK feasibility study on the value of singing for with Chronic Obstructive Pulmonary Disease (COPD). UNESCO Observatory Multi-Disciplinary Journal in the Arts 2013:3;1-19	
	383 384 385	21	McNaughton A, Aldington S, Williams G, et al. Sing Your Lungs Out: A qualitative study of a community singing group for people with Chronic Obstructive Pulmonary Disease (COPD). BMJ Open 2016;6:e012521 doi:10.1136/bmjopen-2016-012521	
	386 387 388	22	Global Strategy for Diagnosis, Management, and Prevention of COPD - 2016 - Global Initiative for Chronic Obstructive Lung Disease - GOLD. http://goldcopd.org/global-strategy-diagnosis-management-prevention-copd-2016/	
	389 390	23	Bjelland I, Dahl A, Haug T, et al. The validity of the Hospital Anxiety and Depression Scale: an updated literature review. <i>J Psychosom Res</i> 2002;52:69-77	
	391 392 393	24	van der Molen T, Willemse BWM, Schokker S, <i>et al.</i> Development, validity and responsiveness of the Clinical COPD Questionnaire. <i>Health Qual Life Outcomes</i> 2003; 1 :13.	
	394 395	25	Clausen JL, Coates AL, Quanjer PH. Measurement of lung volumes in humans: review and recommendations from an ATS/ERS workshop. <i>Eur Respir J</i> 1997;10:1205–6	
	396 397	26	ATS Statement: Guidelines for the Six-Minute Walk Test. Am Thorac Soc Am J Respir Crit Care Med 2002; 166 :111–7. doi:10.1164/rccm.166/1/111	
	398 399	27	Shirtcliffe P, Weatherall M, Marsh S, <i>et al.</i> COPD prevalence in a random population survey: a matter of definition. <i>Eur Respir J</i> 2007;30:232–9	
	400 401	28	Ministry of Health New Zealand. District health board Maori health plans profiles and needs assessments. 2015.http://www.health.govt.nz/publication/dhb-maori-health-profiles	
	402 403 404	29	Celli BR, Cote CG, Marin JM, <i>et al.</i> The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. <i>NEJM</i> 2004;350:1005–12. doi:10.1056/NEJMoa021322	
55 56 57 58 59	405 406	30	Puhan MA, Frey M, Büchi S, et al. The minimal important difference of the hospital anxiety and depression scale in patients with chronic obstructive pulmonary disease.	
60 60			19	

1 2	
3 4	407
5 6	408
7	409
8	410
9	411
10	412
11	413
12	413
13	414
14	415
15	
16	416
17	417
18	418
19 20	419
21	420
22	421
23	
24	422
25	423
26	424
27	425
28	425
29	
30	
31	
32 33	
34	
35	

	Health Qual Life Outcomes 2008; 6 :46. doi:10.1186/1477-7525-6-46
31	Holland AE, Nici L. The Return of the Minimum Clinically Important Difference for 6-Minute-Walk Distance in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2013;187:335–6. doi:10.1164/rccm.201212-2191ED
32	Holland AE, Spruit MA, Troosters T, <i>et al.</i> An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. <i>Eur Respir J</i> 2014; 44 :1428–46. doi:10.1183/09031936.00150314
33	Bolton CE, Bevan-Smith EF, Blakey JD, et al. British Thoracic Society guideline on pulmonary rehabilitation in adults. <i>Thorax</i> 2013;68:ii1–ii30.
34	Spruit MA, Pitta F, McAuley E, <i>et al.</i> Pulmonary Rehabilitation and Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. <i>Am J Respir Crit Care Med</i> 2015; 192 :924–33. doi:10.1164/rccm.201505-0929Cl
35	Holland AE, Hill CJ, Jones AY, <i>et al.</i> Breathing exercises for chronic obstructive pulmonary disease. <i>Cochrane Database Syst Rev</i> Published Online First: 2012. doi:10.1002/14651858.CD008250.pub2
36	Pooler A, Beech R. Examining the relationship between anxiety and depression and exacerbations of COPD which result in hospital admission: a systematic review. <i>Int J</i>

Chron Obs Pulmon Dis 2014;9:315-30.

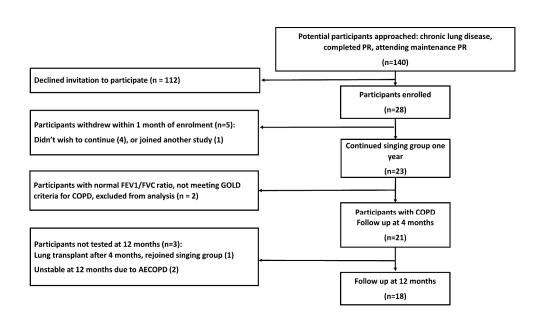


Figure 1: Study overview.

COPD = chronic obstructive pulmonary disease, PR= pulmonary rehabilitation, AECOPD = acute exacerbation of COPD, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, GOLD = Global Initiative for Chronic Obstructive Lung Disease

Figure 1 shows the study overv 338x190mm (300 x 300 DPI)

Setting up a singing group like Sing Your Lungs Out

We provide links below to two short videos of this singing group and a '10 practical top tips' document for setting up a community singing group for people living with COPD which we hope will inform, motivate and encourage others to set up singing groups.

https://www.dropbox.com/sc/boc5sr7hkcbi6tz/AAAlbUQqOWyvDeJGTnoXVcg-a?preview=NO_Graphics_02.mp4
https://www.youtube.com/watch?v=fduau0jV09o

http://www.mrinz.ac.nz/pdfs/How to set up SYLO.pdf

en: first published as 10.1136/bmjopen-2016-014151 on 24 January 2017. Erasmush as 10.1136/bmjopen-2016-014151 on 24 January 2017. Downloaded from http://bmjopen.bmj.com/ on June 5, 202

Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies. 5 at Department GEZ-LTA

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a	Pilot in study title.
		commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and	Yes
		balanced summary of what was done and what	
		was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale	Yes Introduction para 1-3, pg3-4
		for the investigation being reported	
Objectives	3	State specific objectives, including any	Yes Introduction para 4, pg 4. No
		prespecified hypotheses	hypotheses, this was a feasibility
			study.
Methods			
Study design	4	Present key elements of study design early in	Methods, para 1, pg 5
		the paper	
Setting	5	Describe the setting, locations, and relevant	Methods, para 1, pg 5 and under
		dates, including periods of recruitment,	'Singing Group Intervention' pg 6
		exposure, follow-up, and data collection	Specific dates are in first line of
			Results, pg 7
Participants	6	(a) Cohort study—Give the eligibility criteria,	Methods, para 1, pg 5
		and the sources and methods of selection of	
		participants. Describe methods of follow-up	
		Case-control study—Give the eligibility	
		criteria, and the sources and methods of case	
		ascertainment and control selection. Give the	
		rationale for the choice of cases and controls	
		Cross-sectional study—Give the eligibility	
		criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give	No matched control group
		matching criteria and number of exposed and	
		unexposed	
		Case-control study—For matched studies, give	
		matching criteria and the number of controls	
		per case	
Variables	7	Clearly define all outcomes, exposures,	Methods, 'data collection', pg 5
		predictors, potential confounders, and effect	
		modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of	Methods, 'Data collection', pg 5
measurement		data and details of methods of assessment	
		(measurement). Describe comparability of	
		assessment methods if there is more than one	
		group	

1 2
3 4 5 6 7
6 7 8
9 10
11 12
14 15
16 17 18
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
21 22 23
24 25 26
27 28
29 30 31
31 32 33 34 35 36 37 38
35 36
37 38 39
40 41
42 43 44
45 46 47
48 49
50 51 52
53 54 55
56 57
58 59 60

Bias	9	Describe any efforts to address potential sources of bias	Objective lung function tests measured by scientist blinded to previous results. Self reported questionnaires
Study size	10	Explain how the study size was arrived at	Convenience sample, twice the size of previous studies.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Methods, 'Analysis', pg 6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Methods, 'Analysis', pg 6
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	N/A
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	Results, para 1, pg 7 and Figure 1 Study overview
		Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe	
		analytical methods taking account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Results, para 1, pg 7 and Study overview Figure 1
		(b) Give reasons for non-participation at each stage	Results, para 1 and figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Results, para 2, pg 7 and Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	Result, para 1,pg 7
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	Results, para 3, pg 9 and Table 2 and Figure 2
		Case-control study—Report numbers in each exposure category, or summary measures of exposure Cross-sectional study—Report numbers of external study—Report numbers o	
Main results	16	outcome events or summary measures (a) Give unadjusted estimates and, if	Admission days adjusted. Other

		applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	results unadjusted. Table 2 N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A feasibility study
Discussion			
Key results	18	Summarise key results with reference to study objectives	Discussion para1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Discussion para 3, pg 12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Discussion para 4 and 5, pg 12-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion para 6, pg 13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Funding statement pg 14

^{*}Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.