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ABSTRACT
Introduction: Activated protein C (aPC) plays a pivotal
role in modulating a severe inflammatory response and
is thought to be beneficial for patients with sepsis.
However, several meta-analyses of randomised
controlled trials (RCTs) show that aPC is not
significantly associated with improved survival in
critically ill patients with sepsis. One suggestion is that
these analyses simply ignored observational evidence.
The present study aims to quantitatively demonstrate
how observational data can alter the findings derived
from synthesised evidence from RCTs by using a
Bayesian approach.
Methods and analysis: RCTs and observational
studies investigating the effect of aPC on mortality
outcome in critically ill patients with sepsis will be
included. The quality of included RCTs will be
assessed by using the Delphi list. Publication bias will
be quantitatively analysed by using the traditional
Egger regression test and the Begg rank correlation
test. Observational data will be used as the informative
prior for the distribution of OR. A power transformation
of the observational data likelihood will be considered.
Observational evidence will be down-weighted by a
power of α which takes values from 0 to 1. Trial
sequential analysis will be performed to quantify the
reliability of data in meta-analysis adjusting significance
levels for sparse data and multiple testing on
accumulating trials.
Trial registration number: PROSPERO
(CRD42014009562).

INTRODUCTION
Sepsis is defined as systematic inflammatory
response syndrome (SIRS) caused by infec-
tion.1 Levels of severity vary widely depend-
ing on the presence of shock and organ
failure. Sepsis is a leading cause of morbidity
and mortality in intensive care units. In the
USA alone, there were over 750 000 esti-
mated cases in 1995,2 and sepsis accounts for

over 25% of admissions to ICUs in Europe.3

Due to its significant impact on global
health, every effort has been made to
improve the survival of patients with sepsis.
One such initiative is the Surviving Sepsis
Campaign (SSC) with the objective of redu-
cing mortality from sepsis by 25%.4 Various
strategies have been implemented to achieve
this aim, such as early goal directed therapy,
early use of broad spectrum antibiotics,
source control and low tidal volume ventila-
tion. Although the sepsis mortality rate has
subsequently declined, the SSC goal is far
from being achieved.5

Activated protein C (aPC) has pleiotropic
biological effects and plays a pivotal role in
modulating the severe inflammatory
response which occurs in sepsis. Its biological
effects include, but are not limited to, reduc-
tion of thrombin production by inactivating
factors Va and VIII, and inhibition of IL-1,
IL-6 and TNF-α production by monocytes.6

Many observational studies (OS) have shown
significantly improved survival outcomes in
patients with sepsis treated with aPC com-
pared with controls. Furthermore, these
encouraging results have been confirmed in
the milestone clinical trial PROWESS.
However, the findings have not been repli-
cated in subsequent randomised clinical
trials, and thus enthusiasm for aPC has
declined.
Randomised controlled trials (RCT) are

designed to test the biological efficacy of a
particular treatment, while observational
studies test the effectiveness of that treatment
in the real world setting.7 Differences in effi-
cacy and effectiveness may result from issues
related to trial design, patient selection and
therapeutic implementation. Some systematic
reviews exploring the effect of aPC on sepsis
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exclusively focused on RCTs while ignoring evidence
from OS, and consistently showed that aPC had a
neutral effect on survival outcomes.8 9 We propose that
although RCTs are the ‘gold standard’ for the definite
determination of the clinical efficacy of an intervention,
OS cannot simply be ignored in evidence synthesis. Kalil
and LaRosa provided a frequentist analysis of both obser-
vational and randomised studies, but no Bayesian ana-
lyses were performed.10 From the Bayesian perspective,
OS can be incorporated into the analysis and an inform-
ative prior distribution on the treatment effect derived
from the observational data.11 In contrast to previous
meta-analysis, we will incorporate observational data into
analysis using the Bayesian approach. Furthermore, add-
itional RCTs will be incorporated in order to update the
systematic review.

METHODS
Search strategy
We will search electronic databases including the
Cochrane Central Register of Controlled Trials
(CENTRAL), PubMed, EBSCO, EMBASE and ISI Web
of Science from inception to January 2014. Our core
search consists of terms related to aPC and sepsis (see
table 1 for the detailed search strategy to be used in
PubMed). Strategies will be adapted to other databases.
There will be no language restriction. The references of
systematic reviews will be reviewed to identify additional
eligible articles.

Studies to be included
We will include RCTs and OS for analysis. OS will
include: (1) cohort studies using multivariable analysis
with aPC treatment as one of the covariates; (2) cohort
studies using propensity analysis; (3) case–control
studies; (4) studies with both prospective and retrospect-
ive designs; and (5) all OS irrespective of their methodo-
logical design quality.

Studies to be excluded
We will exclude studies that: (1) do not report mortality
as an endpoint; (2) are a secondary analysis of a primary
study whose data have been published elsewhere; and
(3) only include a single arm so that no comparison can
be made between different treatment strategies (eg,
such as analysis of risk factors).

Data extraction
A custom-made form will be used to extract the follow-
ing data from eligible studies: name of the first author,
year of publication, sample size, illness severity scores
(APACHE II, SOFA and SAPS), number of deaths in
each arm, total number of participants in each arm,
bleeding or haemorrhage events in each arm, OR of
treatment versus non-treatment for mortality, the
method used for covariate adjustment (propensity score
analysis, logistic regression model) and the design of the
OS (prospective vs retrospective). The adverse event of
bleeding will be divided into two categories: major
bleeding (terms consist of combinations of ‘massive’,
‘major’ and ‘bleeding’, ‘haemorrhage’) and any bleed-
ing (terms consist of combinations of ‘minor’ and
‘bleeding’, ‘haemorrhage’). If only the risk ratio (RR) is
reported, we will transform it into the OR by using
standard formula (described elsewhere12):

OR ¼RR � ð1� CERÞ
1� CER � RR

where CER indicates control event rate (same as control
group risk). Mortality is defined variably across studies
(eg, 28-day, in-hospital, 60-day or 90-day) and we will
include all types of definitions for analysis.

Quality assessment of RCTs and OS
Quality assessment of included RCTs will be performed
by using the Delphi list, which consists of nine items:
sequence generation, allocation concealment, baseline
characteristics, eligibility criteria, blindness to outcome
assessor, blindness to care provider, blindness to patient,
use of point estimate and variability for outcome mea-
sures, and use of intention to treat analysis.13 The explan-
ation and rating for each item are given in table 2.
Quality assessment of OS will be performed by using the
modified Newcastle–Ottawa scale which has been
described elsewhere (table 3).14

Publication bias
Publication bias will be quantitatively analysed by using
the traditional Egger regression test and Begg rank cor-
relation test.15 16 The Begg rank correlation test investi-
gates the relationship between the standardised OR and
sample size or variance by using the Spearman rank cor-
relation.17 In the Egger regression test, the standard
normal deviate (the OR divided by its SE) is regressed
against the estimates precision. The intercept of the
regression line is an estimate of asymmetry: the larger its

Table 1 Search strategy performed in PubMed

Items Search terms

Number of

citations

1# ((activated protein C[Title/

Abstract]) OR xigris[Title/

Abstract]) OR drotrecogin alfa

[Title/Abstract]

4460

2# (sepsis[Title/Abstract]) OR

septic shock[Title/Abstract]

72 635

3# (((mortality[Title/Abstract]) OR

safety[Title/Abstract]) OR

adverse events[Title/

Abstract]) OR bleeding[Title/

Abstract]

875 580

1# AND

2# AND

3#

531
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deviation from origin, the more significant the asym-
metry.18 A contour enhanced funnel plot will be used to
visually assess the presence of publication bias. OR is
plotted on the horizontal axis, and precision is plotted
on the vertical axis, with asymmetric distribution of com-
ponent studies representing potential publication bias.
Contour lines are added to the plot at conventional
statistical significance levels of <0.01, <0.05 and <0.1.
A funnel contour enhanced plot can aid interpretation
of the funnel plot. If studies are missing in the non-
significance area, it is likely that the asymmetry is caused
by publication bias. Conversely, if studies are in the sig-
nificance area, the asymmetry is more likely caused by
factors other than publication bias, such as study
quality.19

Sensitivity or subgroup analysis
Sensitivity analysis will be performed by excluding
studies with poor methodological design. Subgroup ana-
lysis will be performed to explore confounding factors

such as shock versus non-shock, and the effect of aPC
modified by disease severity. If there are enough studies
with the same definition of mortality (n>5), subgroup
analysis will be performed by different mortality
definitions.

Statistical analysis
Three key components of Bayesian analysis are prior, likeli-
hood and posterior. The quantity of interest in our study is
the OR for mortality. Observational data are used as the
informative prior for the distribution of OR. For studies
using a logistic regression model for risk adjustment, we
will extract adjusted OR and relevant 95% CI for analysis.
For studies using propensity matched analysis, the OR
from matched samples are calculated. Random effects
meta-analysis will be performed to combine the results
obtained from OS, by using a Bayesian approach.20 The
WinBUGS code for performing the calculation is shown in
table 3. The pooled OR will be transformed by natural log
to ln(OR) to improve normality. The SE in the natural log

Table 3 Quality assessment of included observational studies using the modified Newcastle–Ottawa scale

Selection Representativeness of the exposed

cohort

This item will be assigned a ‘⋆’ when all eligible patients with severe

sepsis or septic shock are included in the analysis during the study

period

Selection of the non-exposed cohort This item will be assigned a ‘⋆’ when all eligible patients without

aPC treatment are included in the analysis during the study period

Ascertainment of exposure This item will be assigned a ‘⋆’ when aPC administration is directly

obtained from a medical chart, not from reporting by the patient

Outcome of interest is not present at

the start of the study

This item will be assigned a ‘⋆’ when the subject is alive at the time

of enrolment

Comparability Comparability of cohorts on the basis

of design or analysis

Baseline characteristics of aPC and control groups are comparable.

Usually this can be found in table 1 of the original article.

Outcome Assessment of outcome This item will be assigned a ‘⋆’when mortality is assessed by the

investigator, not by the report of the patient’s family or next-of-kin

Is follow-up long enough for outcome

to occur?

Adequate follow-up is carried out during hospital stay, ICU stay or

redefined study time

Adequacy of follow-up of the cohort This item will be assigned a ‘⋆’ when the follow-up rate is >80%

aPC, activated protein C.

Table 2 Quality assessment of randomised controlled trials using tools adapted from the Delphi list

Items Explanation Rating

Sequence generation Is the method of sequence generation clearly reported? Yes/no/unclear

Allocation concealment Is treatment allocation concealment (using an opaque envelope, central

allocation) performed?

Yes/no/unclear

Baseline characteristics Are the groups similar at baseline regarding the most important prognostic

factors?

Yes/no/unclear

Eligibility criteria Are eligibility criteria clearly specified? Yes/no/unclear

Blindness to outcome

assessor

Is the outcome (mortality) assessor blinded? Yes/no/unclear

Blindness to care provider Is the allocation unknown to the treating physician? Yes/no/unclear

Blindness to patient Is the patient blinded? Yes/no/unclear

Point estimate and

variability

Are the point estimate and variability reported for the outcome measure? Yes/no/unclear

Intention-to-treat Does the analysis include intention to treat analysis? Yes/no/unclear

Zhang Z. BMJ Open 2014;4:e005622. doi:10.1136/bmjopen-2014-005622 3

Open Access
P

ro
tected

 b
y co

p
yrig

h
t, in

clu
d

in
g

 fo
r u

ses related
 to

 text an
d

 d
ata m

in
in

g
, A

I train
in

g
, an

d
 sim

ilar tech
n

o
lo

g
ies.

 . 
E

rasm
u

sh
o

g
esch

o
o

l
at D

ep
artm

en
t G

E
Z

-L
T

A
 

o
n

 Ju
n

e 9, 2025
 

h
ttp

://b
m

jo
p

en
.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

31 Ju
ly 2014. 

10.1136/b
m

jo
p

en
-2014-005622 o

n
 

B
M

J O
p

en
: first p

u
b

lish
ed

 as 

http://bmjopen.bmj.com/


scale can be transformed from the 95% credible interval
by using the equation:

Standard error ðsÞ ¼Lup � Llo

2� 1:96

where Lup and Llo represent the upper and lower limits of
the 95% credible interval. The precision is the reciprocal
of SE.
The framework to incorporate observational data as

informative prior is presented by Chen and Ibrahim.11

Model development has been described elsewhere but
we repeat it here for the reader’s benefit. Let the data
from RCTs be denoted by D, and the likelihood of RCTs
be denoted by L(θ|D). Suppose we have data from OS
which are denoted by D0. Furthermore, let P(θ) denote
the prior distribution for θ before OS are incorporated.
P(θ) is the initial prior distribution for θ. Given α, the
power prior distribution of θ is defined as:

P(ujD0;a)/ L(ujD0)a � P(ujc0)

where c0 is the hyperparameter for initial prior, and α is
used to weight observational evidence relative to the like-
lihood of RCT evidence. The value of α controls the
impact of observational evidence on P(θ|D0, α). When
evidence from RCTs is added to the model, a power
transformation of the observational data likelihood is
considered:

P(ujData) ¼ L(ujRCTs)� [L(ujObs)]a � P(u)

where P(θ|Data) is the posterior distribution for model
quantities, [L(θ|Obs)] is the likelihood function derived
from observational data, and L(θ|RCTs) is the likelihood
function from RCT data. The weight of observational data
is counted by the power α. The power takes values from 0
to 1. If α=0, the observational data are essentially removed
from analysis and only RCTs are used for evidence synthe-
sis; if α=1, observational data are taken at their ‘face value’
and not discounted at all. Traditional meta-analyses such
as those done in The Cochrane Collaboration included
only RCTs that actually render α=0. In our analysis, α will
take 12 values ranging between 0 and 1 (0.000001, 0.001,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), resulting in a
series of posterior distributions for OR. As shown in
table 4, the WinBUGS code is composed of three parts.
Part (1) is to repeat meta-analysis of RCTs 12 times, once
for each value of α to discount the observational evidence.
Part (2) is the meta-analysis model. In this section, i repre-
sents the component studies and k indices each of the 12
meta-analyses. These meta-analyses differ from each other
only in the prior distribution for the overall pooled
effect d, which is represented by:

d[k] � dnorm(0:33; prec:d[k]):

The mean of prior distribution (the figure 0.33 in the
expression is used for illustration purposes, and is not
obtained from real analysis) is the natural log of the pooled

OR (LOR) estimated from observational data. The pooled
OR is estimated with a Bayesian approach with a random
effects model. The code for the random effects
meta-analysis is shown in table 4. The precision of the prior
distribution, prec.d[k], is determined in part (3). Part (3) is
to calculate precision of the prior discounted by using α.21

Convergence diagnostics will be explored by running
two chains. Simulated values will be compared to iden-
tify when they become similar. History plots with differ-
ent chains superimposed (in different colours) will help
to determine convergence. Furthermore, we will use the
Brooks–Gelman–Rubin diagnostic to test convergence.
The procedure will produce three coloured lines (red,
blue and green). Convergence is deemed to occur when
the red line settles close to 1 and the blue and green
lines converge together.
Trial sequential analysis (TSA) is performed to quan-

tify the reliability of data in meta-analysis adjusting sig-
nificance levels for sparse data and multiple testing on
accumulating trials.22 Trial sequential monitoring
boundaries are used to control the risks for type I and II
errors and to indicate whether additional trials are
needed. A zero-event trial will be handled by the con-
stant continuity correction method with a correction
factor of 0.5, that is, 0.5 is added to each cell of the 2×2
table.23 The information size calculation requires the
mortality rate in the control group and the minimal
effect size for the intervention. We predefined that the
mortality in the control group is 30%, and the interven-
tion is able to reduce the relative risk by 10%. The con-
ventional α and β are 0.05 and 0.2, respectively.
Meta-analysis will be updated by adding component
studies sequentially in the order of publication.
Statistical analysis will be performed by using

WinBUGS (Imperial College and MRC, UK) and Stata
V.12.0 (College Station, Texas, USA). TSA will be per-
formed by using the software TSA V.0.9 Beta
(Copenhagen Trial Unit, 2011).

Results to be reported
Search results will be displayed in a flowchart. Pooled
results from conventional meta-analysis techniques will
be displayed in forest plots separately for RCTs and OS.
Publication bias as shown in funnel plots will also be dis-
played, again separately for RCTs and OS. The results of
TSA will be reported graphically. Random effects
meta-analysis using a Bayesian approach will be used to
pool summary effects for observational evidence and the
results will be reported by using a caterpillar plot.
Summary OR will also be plotted against different values
of α to examine how observational evidence influences
the summary effect. The Brooks–Gelman–Rubin plot
will be used to display convergence diagnostics.

DISCUSSION
aPC was once the only approved drug for the treatment
of sepsis. However, it was withdrawn from the market
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Table 4 WinBUGS codes for performing random effects meta-analysis and meta-analysis incorporating observational data

Random effects meta-analysis Informative prior with observational data

Model† model {

for (i in 1:N)

{

P[i]<-1/V[i] Y[i]∼dnorm(delta[i], P[i]) delta[i]∼dnorm(d, prec)

OR[i]<-exp(delta[i])

} d∼dnorm(0, 1.0E-5) OR[13]<-exp(d) tau∼dunif(0,10) tau.
sq<-tau*tau prec<-1/tau.sq

}

model {

# (1) create multiple datasets

for (i in 1:5) {

for (k in 1:12) {

rc[i, k]<- rc.dat[i] rt[i, k]<-rt.dat[i] nc[i, k]<-nc.dat[i] nt[i,

k]<-nt.dat[i] }

}

# (2) estimate RCT meta-analysis model for each

value of data

for (k in 1:12) {

for (i in 1:5) {

rc[i,k]∼dbin(pc[i,k], nc[i,k])
rt[i,k]∼dbin(pt[i,k], nt[i,k]) logit(pc[i,k])<-mu[i,k]

logit(pt[i,k])<-mu[i,k]+delta[i,k]

mu[i,k]∼dnorm(0.0, 1.0E-6)

delta[i,k]∼dnorm(d[k], prec[k])

or[i,k]<-exp(delta[i,k])

}

d[k]∼dnorm(0.33, prec.d[k])

OR[k]<-exp(d[k])

prec[k]<-1/tau.sq[k]

tau.sq[k]<-tau[k]*tau[k]

tau[k]∼dunif(0,5)
}

# (3) calculate precision of prior (from

meta-analysis of obs studies) downweighted

using alpha

for (k in 1:12) {

prec.d[k]<-alpha[k]*271.3

}

}

Data‡ list(Y=c(-0.51083, -0.73397, -0.24846, -0.15082, -0.54473,

-0.52763, -0.36817, -0.13926, -0.75502, -0.27444,

-0.26136),

V=c(1.706611, 0.01954, 0.035483, 0.021832, 0.010326,

0.033478, 0.011817, 0.005765, 0.089499, 0.004559,

0.022782),

N=11)

list(rt.dat=c(0,2,3,2,3),

nt.dat=c(67,45,34,56,34),

rc.dat=c(2,3,4,2,0),

nc.dat=c(44,56,78,123,35),

alpha=c(0.0001, 0.2, 0.8)

)

Initials§ list(

d = 472.0235128342391,

delta = c(

470.6994400270435, 472.3980455275865,

472.201137881263, 472.0198057372273,

471.8605396435204,

470.2850099832592, 469.5829735618464,

473.0258057826344, 470.3932238143316,

469.5792223324207,

469.6419041364815),

tau = 0.8303798133648838)

list(

d = 0,

delta = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

tau = 1)

list(d = c(0,0,0),

delta = structure(.Data = c(**place 5*12=60 initial

values here**),

.Dim = c(5,12)),

mu = structure(.Data = c(**place 5*12=60 initial

values here**),

.Dim = c(5,12)),

tau = c(1,1,1,1,1,1,1,1,1,1,1,1)

)

†Contents following # are not syntax used for analysis, but are used to annotate corresponding codes.
‡Data are used for illustration purpose and are not obtained from the real analysis.
§Initial values are randomly generated and do not represent the actual values used in analysis.
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after the large clinical trial PROWESS-SHOCK failed to
identify any beneficial effect in patients with sepsis.
However, in the first place, aPC was approved for use in
patients with sepsis because the PROWESS study demon-
strated a significant beneficial effect, with the study
being stopped early because of its efficacy.24

Furthermore, a large number of OS also showed a large
beneficial effect with the use of aPC. Clinicians may be
confused by these seemingly differing results. It is still
largely unknown whether aPC is beneficial for specific
subgroups of patients with sepsis. In this situation, the
synthesis of evidence for decision making may help to
address these conflicting findings. As a result, a few
study groups have conducted systematic reviews and
meta-analyses to provide comprehensive and up-to-date
evidence for clinical use. The Cochrane Collaboration
has also published the results of an updated
meta-analysis on the effectiveness of aPC for sepsis,
which however showed a neutral effect.8 However, this
meta-analysis only included RCTs. There is no doubt
that the RCT is the gold standard for supplying evidence
for medical decision making and can provide high level
evidence on the comparative effectiveness of interven-
tions. However, there are some circumstances where
non-randomised evidence should be incorporated in
order to estimate effectiveness. These include situations
where there are concerns about internal and external
validity (only effective in specialised centres or highly
selected subjects) and size (estimates are imprecision).
Many RCTs in critically ill patients showed a neutral
effect of the intervention under investigation. In other
situations, initial trials showed a beneficial effect of the
intervention which, however, was refuted by a subse-
quent meta-trial. Reasons for these negative results
include timing of enrolment, endpoint selection and
heterogeneous subjects.25 26

When both RCTs and OS are available, common prac-
tice is to combine data by equally weighting these two
types of studies. When evaluating protective ventilation
for non-acute respiratory distress syndrome (ARDS)
patients, Serpa Neto et al27 combined both RCTs and
observational data with equal weights. The use of such a
practice is partly due to difficulties in model building
under the conventional statistical framework. However,
there will be more flexibility for model building under
the framework of a Bayesian perspective. The advantages
of Bayesian analysis include but are not limited to: (1) it
allows for evidence derived from a variety of sources
including RCTs and observational data; (2) it enables a
direct probability statement regarding the quantity of
interest; and (3) all parameter uncertainties can be
automatically accounted for.28 We believe that the
present study will provide new evidence for the effective-
ness of aPC on mortality in patients with sepsis.
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