

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Individual and community level maternal factors for zero dose children in Ethiopia using EDHS 2019: A mixed effect model

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085235
Article Type:	Original research
Date Submitted by the Author:	09-Feb-2024
Complete List of Authors:	Agimas, Muluken Chanie; University of Gondar College of Medicine and Health Sciences, epidemiology; University of Gondar College of Medicine and Health Sciences, epidemiology Alemayehu, Meron Asmamaw; University of Gondar, Epidemiology Tesfie, Tigabu Kidie; University of Gondar, Department of Epidemiology and Biostatistics Tilahun, Werkneh Melkie ; Debre Markos University, Department of Public Health Asferie, Worku; Debre Tabor University, Departments of pediatric and neonatal Nursing Aweke, Mekuriaw Nibret; University of Gondar, Department of Nutrition ABEBE, MOGES; Debark University, Department of Nursing Yalew, Anteneh; Wolkite University, Department of Public health
Keywords:	IMMUNOLOGY, Immunity, Medicine, Epidemiology < INFECTIOUS DISEASES, Hospitals, Public

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

1	Individual and community level maternal factors for zero dose children in Ethiopia using				
2	EDHS 2019: A mixed effect model				
3	Muluken Chanie Agimas ¹ , Meron Asmamaw Alemayehu ¹ , Tigabu Kidie Tesfie ¹ , Werkneh Melkie				
4	Tilahun ² , Worku Necho Asferie ⁴ , Mekuriaw Nibret Aweke ⁶ , Moges Tadesse Abebe ³ , Anteneh				
5	Kassa yalew ⁵				
6	¹ Department of Epidemiology and Biostatistics, institute of public health, college of medicine and				
7	health science, university of Gondar, Gondar, Ethiopia.				
8	² Department of Public Health, College of Medicine and Health Sciences, Debre Markos				
9	University, Debre Markos, Ethiopia.				
10	³ Department of Nursing, College of Health Science, Debark University, Debark, Ethiopia.				
11	⁴ Departments of pediatric and neonatal Nursing, College of Health Science, Debre Tabor				
12	University, Debre Tabor, Ethiopia				
13	⁵ Department of Public health, college of medicine and Health science, Wolkite University,				
14	Wolkite, Ethiopia.				
15	⁶ Department of Nutrition, Institute of Public Health, College of Medicine and Health Sciences,				
16	University of Gondar, Ethiopia				
17	Authors address:				
18	1. Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com				
19	2. Meron Asmamaw Alemayehu (MAA): merryalem101@gmail.com				
20	3. Tigabu Kidie Tesfie (TKT): <u>tigabukidie@gmail.com</u>				
21	4. Werkneh Melkie Tilahun (WMT): <u>werkneh7wmt@gmail.com</u>				
22	5. Worku Necho Asferie (WNA): workunecho@gmail.com				
23	6. Mekuriaw Nibret Aweke (MNA): <u>mekunib@gmail.com</u>				
24	7. Moges Tadesse Abebe (MTA): moges7045@gmail.com				
25	8. Anteneh Kassa yalew (AKY): antenehkassa28@gmail.com				
26	Corresponding author:				
27	Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com				

58 59

60

BMJ Open

1 2		
2 3 4	28	Abstract
5 6	29	Introduction: Zero-dose children refer to a child who has not yet received any childhood vaccines.
/ 8 9	30	Globally, zero-dose vaccination status is the major public health problem. In sub-Saharan African
10 11	31	countries, among five children, one did not access the vaccines. But the efforts to identify the
12 13	32	factors contributing to the zero-dose child are not well addressed in Ethiopia.
14 15 16	33	Objectives: To assess individual and community-level maternal factors of zero-dose children in
17 18	34	Ethiopia using EDHS 2019.
19 20	35	Methods: A secondary analysis of a cross-sectional study was used among a total of 3208
21 22 23	36	participants. The STATA-14 was used for descriptive and multilevel binary logistic regression
23 24 25	37	(mixed effect model) analysis. Model selection was conducted using AIC. To identify significant
26 27	38	factors for zero-dose children, a p-value of <0.05 with 95% confidence was used.
28 29	39	Results: The prevalence of zero-dose vaccination status among children aged 12-35 months old
30 31 32	40	was 523 (16.3%, 95%CI, 15%–17.6%). Women with no ANC follow-up (AOR =1.55, 95% CI:
33 34	41	1.02-2.35), none educated women (AOR =1.47, 95% CI: 1.11-1.95), women who gave birth at
35 36	42	home (AOR =1.39, 95% CI: 1.04–1.86), women who had poor wealth index (AOR =2.15, 95%
37 38 30	43	CI: 1.62–2.85), and women from low proportions of community media exposure (AOR =1.39,
39 40 41	44	95% CI: 1.13–1.71) were the risk factors for zero-dose children in Ethiopia.
42 43	45	Conclusion: As compared to the previous studies, the prevalence of zero-dose vaccination status
44 45	46	was low in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth
46 47 48	47	index, no ANC visit, and women from low proportions of community media exposure were the
49 50	48	risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and
51 52	49	media access for women is highly recommended to reduce zero-dose child.
53 54 55		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

50 Key words: zero-dose vaccination, maternal factors, EDHS, Ethiopia

51 Introduction

A zero-dose vaccine child is defined as a child who does not uptake any types of vaccines [1]. Globally, the uptake of childhood vaccines prevents 2.5 million child deaths each year [2, 3]. Onefifth of sub-Saharan African children never get the vaccines [4]. Childhood vaccination is the most cost-effective strategy for vaccine-preventable disease like poliomyelitis, measles, pneumonia, hepatitis B virus, diphtheria, Haemophilus influenza type B (Hib), tuberculosis, diarrhea, and others [5, 6]. Eradicated vaccine-preventable diseases (VPDs) are reemerged because of increasing zero-dose vaccination among children [7-10].

In Africa, due to non-uptake of basic vaccines, 30 million under-five children are attacked by vaccine-preventable diseases, and 500,000 of them die each year [11]. In 2020, about 17 million under-five children in low and middle-income countries will also not take any vaccines [12]. Which means the majority of zero-dose children are from low and middle-income countries, especially in African and Southeast Asian regions [13]. The proportion of zero-dose vaccines is a good indicator of the failure to achieve the national vaccination coverage goal in sub-Saharan Africa (90%) [14]. By 2030, the World Health Organization (WHO) plans to decrease the number of children with no uptake of any vaccine by half [15]. But the COVID-19 pandemic was a threat to the immunization program, which increased the number of zero-dose children by 37% [16].

68 Conducting research on zero-dose vaccines is very important for evidence-based strategies,
69 interventions, and achieving the WHO goal [17]. Additionally, searching for evidence on the
70 burden and factors of the zero-dose vaccine is crucial for childhood disability reduction [18-20].
71 Among factors affecting not taking any vaccine dose are lack of attention for the zero-dose
72 population, rural residence, and low educational status [21-23]. Ethiopia is the fourth-leading

Page 5 of 21

BMJ Open

contributor to global zero-dose children, despite considerable progress in the total number of infants being immunized [24]. As previous evidence showed, the distribution of vaccination among children in Ethiopia varied across the regions, and thus the lowest proportion (21%) of vaccinated children was reported in the Somali and Afar regions, and the highest proportion (89%) of immunized children was reported in the Amhara region [25]. Even though several studies have been conducted in Ethiopia about vaccination coverage, the prevalence of zero-dose children is rare. Even though zero-dose children in Ethiopia are a public health concern, the efforts to identify the factors contributing to the zero-dose vaccine are not well addressed, and therefore studies are needed to assess the prevalence and determinants of zero-dose children in Ethiopia. Therefore, this study aimed to determine the prevalence and identify individual and community-level factors for zero-dose children in Ethiopia using the EDHS 2019 mixed effect model.

84 Methods

85 Study design, area and period

The EDHS-2019 data was collected from March 21 to June 28, 2019 using a cross-sectional study design. Ethiopia is a low-income country located in the Horn of Africa, and its capital city is Addis Ababa. In Ethiopia, Dallol (128 meters above sea level) and Ras Dashen (4620 meters above sea level) are the lowest and highest latitudes above sea level, respectively [26]. Ethiopia has twelve administrative regions, namely Afar, Somalia, Harari, Amhara, Oromia, Gambela, South Ethiopia, Central Ethiopia, Tigray, Benishangul Gumuz, Sidama, and southwest Ethiopia. Addis Ababa and Dire Dawa are the two self-governed cities in Ethiopia. According to the December 27, 2023, worldometre estimate, Ethiopia has a total population of 128,073,400, and the rural population comprises about 77.9% of the total population [27].

Population The source population was all women who had children prior to the survey, and women who had children aged 12-35 months in the enumeration area were included in the study. Variables **Dependent variable:** Zero dose vaccine status (Yes, No) **Independent variables:** wealth index, residence, educational status, place of delivery, cesarean delivery, religion, age of the women, ANC visit, media exposure, region, current breast feeding, current pregnancy **Clustering variable:** EDHS cluster (V001) **Operational definition** Zero dose vaccine status: In this study, children who have not yet received any childhood vaccines are categorized as zero-dose children (yes), and children who have received at least one dose of vaccine are classified as non-zero-dose vaccines (no) [1]. Media exposure: was assessed based on whether people had access to read newsletters, listen to the radio, and watch TV. Accordingly, if they have access to all three media (newsletter, radio, and TV) at least once a week, we categorized them as "yes", otherwise "no" [28]. Sampling method and procedure The EDHS 2019 sample was stratified and selected in two stages. Each region was stratified by urban and rural areas, with a total of 21 sampling strata. A total of 305 EAs, 93 EAs in urban areas, and 212 EAs in rural areas, were selected using proportional EA size allocation techniques. In the selected EAs, household listings were conducted. Then 30 households were selected per cluster using equal-probability systematic selection techniques. Finally, a multistage sampling method

Page 7 of 21

BMJ Open

was used to select 3208 participants who had children aged 12-35 months in the selected EAs. The
detailed section is reported in the EDHS 2019 report [29].

8 121 Data source, collection and quality assurance

We used the secondary analysis of the EDHS 2019 data set. This data was collected using a pretested structured interview technique from March 21 to June 28, 2019. The location of the data was also collected using a geographic positioning system (2 kilometers for urban clusters and 5 kilometers for rural clusters). To assure the quality of the data, pretesting and training for data collectors and supervisors were conducted. The detail section on data source, collection, and quality assurance has been reported in EDHS 2019 [29]. For the purpose of further analysis for the current study, data was requested online from the demographic health survey international at DHS's official website, www.measuredhs.com. Then the data was accessed after 2 working days. After the data was accessed, data cleaning, recoding, and overall data management were conducted.

³³ 132 Data processing and statistical analysis
 ³⁴

After accessing the data from DHS International, cleaning, recoding, sampling weight, and missing data checking were conducted using STATA software version 14. After this, multilevel (mixed-effect) binary logistic regression was used to identify the determinants for zero-dose children. The reason we used such a model was because of the hierarchical nature of the EDHS data and the possibility of considering a natural nesting of data. We built models like the null model (a model with an intercept/no predictors), model I (level one predictors), model II (a model with level two predictors), and model III (mixed effect model). The mixed effect model is:

- ⁵¹₅₂ 140 Logit (Yij)= $\beta 0j+\sum\beta Xi+\Upsilon Zj+\epsilon j$, where $\beta 0j=\beta 0+\mu j$, $\mu j\sim N(0, \sigma 2 u)$ [30].
- 54 141 Where $\varepsilon j = \varepsilon 0 + \varepsilon j$, $\varepsilon j \sim N (0, \sigma 2 \varepsilon)$

2 3	142	Logit (Yii) = $\ln(Yii/(1-Yii))$ or log odds of zero dose child (Yii)= the probability of zero dose
4 5	172	
6 7	143	child for women "i" in the enumeration area and residence of rural and urban region "j".
, 8 9	144	$\beta 0j$ =random intercept of the cluster "j"
10 11	145	"εj"=residual for each cluster "j"
12 13	146	" β "= the fixed effect regression coefficient
14 15 16	147	"Xi"= level one predictor
17 18	148	"YZj"=level II predictor for clusters
19 20	149	To test the clustering effect, the intra-class correlation coefficient was used with a cutoff of >0.05 .
21 22 22	150	(>5%). For each model, Intraclass correlation (ICC (ρ) = $\sigma 2 \epsilon/\sigma 2 \epsilon + \sigma 2\mu$ [31] was calculated. The
23 24 25	151	clustering variable to show the clustering effect of zero-dose children was the EDHS cluster
26 27	152	(V001). The proportional change in variance (PCV=variance of the null model minus variance of
28 29	153	the next model/variance in the null model*100) [31] and Akaike information criteria (AIC = 2k-
30 31 32	154	2lnL, where k is the number of parameters and L is the maximum value of the likelihood function
33 34	155	of the model) were also calculated. Then the best model was selected based on the lowest AIC
35 36	156	value (Table 1). A bi-variable multilevel binary logistic regression analysis was conducted to
37 38 39	157	select the potential candidate variable for multivariable multilevel binary logistic regression
40 41	158	analysis at a p-value of <0.25. In the multivariable multilevel binary logistic regression analysis,
42 43	159	the significant predictors were selected using a p-value of < 0.05 . To estimate the effect measure
44 45	160	of each predictor, an AOR with a 95% confidence level was used.
40 47 48	161	Table 1: A model comparisons for zero dose children in Ethiopia using EDHS 2019.
49 50	162	
51 52	163	
53 54 55 56	164	
57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1							
2 3 4	165	Results					
5 6	166	Characteristics of the participants					
7 8 9 10 11	167	Among a total of 3028 participants, about half, 1648 (51.4%), had no education. About 1447					
	168	(45.1%) and 2316 (72.2%) of them gave birth at home and had no ANC visit, respectively.					
12 13	169	Furthermore, 1594 (49.7%) and 2442 (76.1%) of the participants had poor wealth index and were					
14 15 16	170	from rural residence, respectively (Table-2).					
17 18	171	Table-2: characteristics of the participants among women who had child aged 12-35 months					
19 20	172	old in Ethiopia using EDHS 2019.					
21 22 23	173	Prevalence of zero dose children in Ethiopia					
23 24 25	174	The prevalence of zero-dose vaccination status among children aged 12-35 months old was 523					
26 27	175	(16.3%, 95%CI, 15%–17.6%) (Fig-1).					
28 29	176	Fig-1: Prevalence of zero dose children in Ethiopia using EDHS 2019.					
30 31 32	177	Factors associated with zero dose children					
33 34	178	Before we started to use the multilevel binary logistic regression analysis, the clustering of zero-					
35 36	179	dose vaccination status was checked using the clustering variable of the EDHS cluster (V001).					
37 38 39	180	Thus, the ICC value for a model with an intercept (the null model) was 0.38 (38%). This implies					
40 41	181	that there was enough evidence to use multilevel binary logistic regression analysis. Four models					
42 43	182	were built: the null model (a model with only an intercept), model I (a model with individual-level					
44 45 46	183	factors), model II (a model with community-level factors), and model III (a model with a mixed					
40 47 48	184	individual- and community-level factor). For each model, ICC, PCV, LLR, variance and AIC were					
49 50	185	calculated. The model comparison was done with the lowest AIC value. The mixed model (model					
51 52	186	III) had the lowest AIC value (AIC = 3801). Additionally, the PCV, ICC, and LLR for the best					
53 54 55 56	187	model (mixed effect model) were 56.3%, 7.8%, and -1889, respectively (Table-1).					
57 58		8					

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

The potentially candidate variables were selected by bi-variable multilevel binary logistic regression with a p value of <0.25. Thus, in the multivariable multilevel binary logistic regression analysis, wealth index, educational status, place of delivery, residence, media exposure, and ANC visit were the significant factors for zero-dose children in Ethiopia. Women with no ANC follow-up were 1.55 (AOR = 1.55, 95% CI: 1.02–2.35) times more likely to not vaccinate all doses of vaccine for their child than those who had an ANC visit. None of the educated women were 1.47 (AOR =1.47, 95% CI: 1.11–1.95) times more likely to not vaccinate all doses of vaccine for their child than those who had secondary and above educational levels. The odds of a zero-dose child among women who gave birth at home were 1.39 (AOR =1.39, 95% CI: 1.04–1.86) times more likely than women who gave birth at the health facility. The odds of a zero-dose child among women who had a poor wealth index were also 2.15 (AOR =2.15, 95% CI: 1.62–2.85) times more likely than rich women. Also, the odds of a zero-dose child among women from a low proportion of community media exposure were 1.39 (AOR =1.39, 95% CI: 1.13–1.71) times more likely than women from a high proportion of community media exposure. Furthermore, the odds of a zerodose child among rural women were 2.29 (AOR =2.29, 95% CI: 1.53-3.42) times higher than those among urban women (Table-3).

Table: 3 individual and community level maternal factors of zero dose children in Ethiopia
using EDHS-2019

206 Discussion

Uptake of all basic vaccines is a pillar for the reduction of child mortality and morbidity from
VPDs. But especially developing countries, including Ethiopia, are faced with the non-uptake of
basic vaccines. Because of this, VPDs are a challenge for many poor countries. Even though it is
still a public health problem, the magnitude and the determinants of zero-dose vaccine status

Page 11 of 21

BMJ Open

among children are not well known. Therefore, in the current study, an attempt has been made to assess the prevalence of zero-dose vaccination status among children and its determinants in Ethiopia. Thus, the prevalence of zero-dose vaccination status among children aged 12-35 months old was 523 (16.3%, 95%CI, 15%-17.6%). This finding was in line with a study conducted in Sub-Saharan Africa (16.5%) [1]. But it was lower than a study conducted in Togo (26.88%) [32]. This might be because in the previous study, the vaccination card was considered to declare the vaccination status of the child, but the mother's report was not considered. This may overestimate the previous finding. The current finding was also lower than a study conducted in Cameroon (91.7%) [33]. The possible reason for the discrepancy might be that the study done in Cameroon was conducted in an area where access to health services is very low (the remote rural districts, the homeless population, and immigrants). This segment of the population is suffering from a lack of basic health services, including immunization. This causes a higher prevalence of zero-dose vaccination status among children.

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Regarding the factors associated with a zero-dose child, it was found that the odds of a zero-dose vaccine were higher among women who delivered at home than those who delivered at a health facility. This finding was supported by a study conducted in Cameroon [33], a study conducted in sub-Saharan Africa [1] and Ethiopia [34]. This can be explained by the fact that women who give birth at home miss childhood vaccines, including birth doses, and they may not get counselling on childhood vaccines, such as the advantages of vaccination, schedules of vaccine doses, and other related information. Moreover, home delivery may have a negative effect on the subsequent healthseeking behavior of women

The odds of a zero-dose child among poor wealth index women were more likely than those amongrich wealth index women. This was supported by a study conducted in low- and middle-income

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

countries [35]. This may be justified by the fact that women with low socioeconomic status have a lower acceptability of health-related messages and a lower understanding of the vaccination advantage [36]. Also, women who had no ANC follow-up were more likely to not vaccinate their child at all than women who had ANC follow-up. This finding is supported by a study conducted in India [37] and a study conducted among 82 low- and middle-income countries [38]. This might be associated with the fact that women who do not attend ANC could not get counselling and education services about the advantages and the time schedule of all basic vaccine doses. Alternatively, women who do not attend the ANC service are more likely to not attend health services after birth as well.

Additionally, the odds of zero-dose children among women who were from low proportions of community media exposure were higher than those among women who were from high proportions of community media exposure. This finding was supported by a study conducted in Indonesia [39]. The possible justification for this association may be due to a lack of media access in the community, which could negatively affect knowledge about the advantages and schedule of the childhood vaccine. Alternatively, women who are from low-community media exposure may miss key information released through media outlets. In return, they are more prone to not vaccinating all doses of vaccine for their children. Additionally, mass media exposure, such as through television, radio, newspapers, and the internet, in the community plays an important role in changing the community's attitude, opinion, awareness, and health service-seeking behavior. But women with a low proportion of community media exposure may lack these advantages. In addition, women who had no education also had higher odds of not vaccinating all doses of vaccines for their child than women who had secondary or higher educational levels. A previous study conducted in Nigeria also reported that as educational levels decreased, the zero-dose

Page 13 of 21

BMJ Open

vaccine status decreased [40]. This may be because educational status is highly correlated with the knowledge and acceptance rate of vaccination [41]. Additionally, low educational status could be a barrier to accessing health services, including childhood vaccination. Furthermore, this study revealed that women who were from rural areas were more likely to not vaccinate their children at all than urban women. The access to health services is quite different between urban and rural [42]. This is due to the barriers to accessing preventive services in the rural areas, for example, lack of transportation, the far distance of health institutions, and the lack of adequate health professionals in rural areas who deliver the service [43, 44]. This study has several implications by providing an important tool for designing strategies and policies to reduce the number of zero-dose children in Ethiopia. Using national representativeness, which increases the power of the study, But because we used secondary data and a cross-sectional study design, our study shared the limitations of the secondary data and the cross-sectional study.

269 Conclusion

As compared to the previous studies, the prevalence of zero-dose vaccination status was low in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and women from low proportions of community media exposure were the risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose child. BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

- 5 275 Ethical declaration
- 7 276 Ethical approval

Since it was a secondary data analysis of EDHS, informed consent from the participants was not
 applicable. Rather, data requests and approval for access were obtained from DHS International.
 All data were fully anonymize before we accessed informed consent from DHS international.

1 2		
3 4	280	Consent for publication
5 6	281	Not required
7 8 0	282	Data availability statement
9 10 11	283	All relevant data is available in the manuscript.
12 13	284	Conflict of interest
14 15	285	The author declare no conflict of interest
16 17 18	286	Funding
19 20	287	No
21 22	288	Acknowledgments
23 24 25	289	The authors would like to give thanks to DHS International for accessing the data.
26 27	290	Author Contributions
28 29	291	Conceptualization: Muluken Chanie Agimas
30 31	292	Formal analysis: Muluken Chanie Agimas, Meron Asmamaw Alemayewhu, Tigabu Kidie Tesfie,
32 33 34	293	Werkneh Melkie Tilahun
35 36	294	Investigation: Muluken Chanie Agimas and Meron Asmamaw Alemayewhu
37 38	295	Methodology: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
39 40 41	296	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
42 43	297	Software: Muluken Chanie Agimas, Werkneh Melkie Tilahun, Worku Necho Asferie, Mekuriaw
44 45	298	Nibret Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
46 47 48	299	Supervision: Muluken Chanie Agimas, Anteneh Kassa yalew
48 49 50	300	Validation: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
51 52	301	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
53 54 55		
55 56		
57 58		13
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

302	Visu	alization: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges			
303	Tadesse Abebe, Anteneh Kassa yalew				
304	Writing – review & editing: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret				
305	Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Meron Asmamaw Alemayewhu, Tigabu				
306	Kidie Tesfie				
307	Abbi	reviation and acronym			
308	AIC.	Akaike information criteria			
309	ANC	Antenatal Care			
310	DHS	Demographic Health Survey			
311	EAs-	Enumeration Areas			
312	EDH	SEthiopian Demographic Health Survey			
313	LLR	Log Likelihood Ratio			
314	SNN	PRSouth Nation and Nationality of People Representative			
315	VPD	sVaccine Preventable Diseases			
316	Refe	rence			
317 318	1.	Ozigbu, C.E., et al., Correlates of Zero-Dose Vaccination Status among Children Aged 12–59 Months in Sub-Saharan Africa: A Multilevel Analysis of Individual and Contextual Factors. 2022.			
319		10 (7): p. 1052.			
320	2.	Antai, D.J.B.i.d., Inequitable childhood immunization uptake in Nigeria: a multilevel analysis of			
321	•	individual and contextual determinants. 2009. 9 : p. 1-10.			
322	3.	Wiysonge, C.S., et al., Individual and contextual factors associated with low childhood immunisation coverage in sub-Sabaran Africa: a multilevel analysis 2012 7 (5): p. e27905			
323	4.	Bobo. F.T., et al., Child vaccination in sub-Saharan Africa: Increasing coverage addresses			
325		inequalities. 2022. 40 (1): p. 141-150.			
326	5.	Fokoun, C.J.H.V. and Immunotherapeutics, Strategies implemented to address vaccine hesitancy			
327	-	<i>in France: a review article.</i> 2018. 14 (7): p. 1580-1590.			
328	6.	Nathanson, N. and O.M.J.A.j.o.e. Kew, From emergence to eradication: the epidemiology of nolicity deconstructed 2010 172 (11): p. 1212 1220			
330	7.	Kretsinger, K., et al., Polio eradication in the World Health Organization African Region, 2008–			
331		2012. 2014. 210 (suppl_1): p. S23-S39.			
		4.4			

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

1			
2			
3	332	8.	Waziri, N.E., et al., Polio eradication in Nigeria and the role of the National Stop Transmission of
4 5	333		<i>Polio program, 2012–2013.</i> 2014. 210 (suppl_1): p. S111-S117.
5	334	9.	Brownwright, T.K., Z.M. Dodson, and W.G.J.B.p.h. van Panhuis, Spatial clustering of measles
7	335		vaccination coverage among children in sub-Saharan Africa. 2017. 17 (1): p. 1-7.
, 8	336	10.	Wobudeya, E., et al., Epidemiology of tuberculosis in children in Kampala district, Uganda, 2009–
9	337		2010; a retrospective cross-sectional study. 2015. 15 : p. 1-8.
10	338	11.	Mihigo, R., et al., Routine immunization in the WHO African region: progress, challenges and way
11	339		forward. 2015. 19 (2): p. 2-7.
12	340	12.	Organization, W.H., WHO UNICEF coverage estimates WHO World Health Organization:
13	341		Immunization, Vaccines and Biologicals. Vaccine preventable diseases Vaccines monitoring system
14	342		2019 Global Summary Reference Time Series: DTP3.[Cited 2020 Feb 12]. 2012.
15	343	13.	Rachlin, A., et al., Routine vaccination coverage—worldwide, 2021, 2022, 71 (44); p. 1396.
16	344	14.	Iheeta M and LLB o t W H O. Newell, Childhood vaccingtion in Africa and Asia: the effects of
1/ 10	345		narents' knowledge and attitudes, 2008. SciELO Public Health, p. 419-419A
10	346	15.	Lindstrand, A., et al. Implementing the immunization agenda 2030: a framework for action
20	347	101	through coordinated planning monitoring & evaluation ownership & accountability and
21	348		communications & advocacy 2023
22	3/10	16	WHO/LINICEE Estimates of National Immunization Coverage (WI JENIC) progress and challenges
23	350	10.	with Achieving Universal Immunization Coverage URI:
24	351		https://www.who.int/publications/m/item/progress_and_challenges
25	221		<u>nicps.//www.wno.nic/publications/in/item/progress-ana-chanenges</u>
26	352	2022.	
2/	353	17.	Chido-Amajuoyi, O.G., et al., Prevalence and correlates of never vaccinated Nigerian children, aged
20 20	354		1–5 years. 2018. 36 (46): p. 6953-6960.
30	355	18.	Cata-Preta, B.O., et al., Zero-dose children and the immunisation cascade: Understanding
31	356		immunisation pathways in low and middle-income countries. 2021. 39 (32): p. 4564-4570.
32	357	19.	Arambepola, R., et al., Using geospatial models to map zero-dose children: Factors associated with
33	358		zero-dose vaccination status before and after a mass measles and rubella vaccination campaign
34	359		in Southern province, Zambia. 2021. 6 (12): p. e007479.
35	360	20.	Galles, N.C., et al., Measuring routine childhood vaccination coverage in 204 countries and
36	361		territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release
3/	362		1. 2021. 398 (10299): p. 503-521.
38 20	363	21.	Murhekar, M.V. and M.S.J.T.L.G.H. Kumar, Reaching zero-dose children in India: Progress and
39 40	364		challenges ahead. 2021. 9 (12): p. e1630-e1631.
41	365	22.	Johri, M., S. Rajpal, and S.J.T.L.G.H. Subramanian, <i>Progress in reaching unvaccinated (zero-dose)</i>
42	366		children in India, 1992–2016: a multilevel, geospatial analysis of repeated cross-sectional surveys.
43	367		2021. 9 (12): p. e1697-e1706.
44	368	23.	VanderEnde, K., et al., <i>Global routine vaccination coverage</i> —2017. 2018. 67 (45): p. 1261.
45	369	24.	Gavi. Reaching zero-dose children.Accessed from:
46	370		https://www.gavi.org/ourgllignce/strategy/phase-5-2021-2025/equity-gogl/zero-dose-children-
4/	371		missed-communities on 2 February, 2024.
48 40	372	25.	Nour, T.Y., et al., Predictors of immunization coverage among 12–23 month old children in
49 50	373		Ethiopia: systematic review and meta-analysis. 2020. 20 (1): p. 1-19.
51	374	26.	Alfaro-Murillo, J.A., et al., The case for replacing live oral polio vaccine with inactivated vaccine in
52	375		the Americas 2020 395 (10230): p. 1163-1166
53	376	27	Francome C. WISS Savage and medicine Caesarean section in Britain and the United States
54	377	_/.	12% or 24%: is either the right rate? 1993, 37 (10): n 1199-1218
55	277		
56			
57			
58 50			15
59			

60

BMJ Open

1			
2			
3	378	28.	Fetene, S.M., T.J.B.P. Gebremedhin, and Childbirth, Uptake of postnatal care and its determinants
4 5	379		in Ethiopia: a positive deviance approach. 2022. 22 (1): p. 601.
5	380	29.	Indicators, K.J.E. and ICF, Mini demographic and health survey. 2019.
7	381	30.	Derseh, N., K. Gelaye, and A. Muluneh, Spatiotemporal Patterns and Determinants of
8	382		Undernutrition Among Late Adolescent Girls in Ethiopia Using Ethiopian Demographic and Health
9	383		Surveys 2000 to 2016: Spatiotemporal and Multilevel Approach. 2021.
10	384	31.	Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: using
11	385		measures of clustering in multilevel logistic regression to investigate contextual phenomena. 2006.
12	386		60 (4): p. 290-297.
13	387	32.	Mangbassim, N.T., et al., Prevalence and factors associated with "zero-dose" in children 12 to 23
14	388		<i>months in Togo.</i> 2023. 9 : p. 12.
15 16	389	33.	Nchinjoh, S.C., et al., Factors Associated with Zero-Dose Childhood Vaccination Status in a Remote
17	390		Fishing Community in Cameroon: A Cross-Sectional Analytical Study. 2022. 10(12): p. 2052.
18	391	34.	Moyer, C.A., et al., The relationship between facility delivery and infant immunization in Ethiopia.
19	392		2013. 123 (3): p. 217-220.
20	393	35.	Hajizadeh, M.J.J.E.C.H., Socioeconomic inequalities in child vaccination in low/middle-income
21	394		countries: what accounts for the differences? 2018.
22	395	36.	Glewwe, P.J.J.o.h.r., Why does mother's schooling raise child health in developing countries?
23	396		Evidence from Morocco. 1999: p. 124-159.
24	397	37.	Krishnamoorthy, Y. and T.J.F.P. Rehman, Impact of antenatal care visits on childhood
25 26	398		immunization: a propensity score-matched analysis using nationally representative survey. 2022.
20	399		39 (4): p. 603-609.
28	400	38.	Farrenkopf, B.A., et al., Understanding household-level risk factors for zero dose immunization in
29	401		82 low-and middle-income countries. 2023. 18 (12): p. e0287459.
30	402	39.	Machmud, P.B., et al., Mother's Media Use and Children's Vaccination Status in Indonesia: A
31	403		Community-Based Cross-Sectional Study. 2022. 9: p. 2333794X221092740.
32	404	40.	Sato, R.J.V., Geospatial and Time Trend of Prevalence and Characteristics of Zero-Dose Children in
33	405		Nigeria from 2003 to 2018. 2022. 10 (9): p. 1556.
34 25	406	41.	Forshaw, J., et al., The global effect of maternal education on complete childhood vaccination: a
36	407		systematic review and meta-analysis. 2017. 17 (1): p. 1-16.
37	408	42.	Douthit, N., et al., Exposing some important barriers to health care access in the rural USA. 2015.
38	409		129 (6): p. 611-620.
39	410	43.	Grant, R., et al., Transportation barriers to child health care access remain after health reform.
40	411	-	2014. 168 (4): p. 385-386.
41	412	44.	Weigel, P.A., et al., Variation in primary care service patterns by rural-urban location. 2016. 32 (2):
42	413		p. 196-203.
43			
44 45	414		
45 46			
47			
48			
49			
50			
51			
52			
53			
54 57			
22 56			
57			
58			16

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

Fig-1: Prevalence of zero dose children in Ethiopia using EDHS 2019.

	Null model	Model I	Madal II	Madal III
	0.27	1.09/	210/	7 90/
	38%			/.ð%
$\frac{PCV(\%)}{1 + 1 + 1 + 1 + 1 + 1 + 1}$		20.3%	22.2%	50.3%
	-1950	-1904	-1920	-1889

Table-2: characteristics of the participants among women who had child aged 12-35 months

old in Ethiopia using EDHS 2019.

Variable	Category	Weighted frequency	%
Wealth index	Poor	1594	49.7
	Middle	449	14
	Rich	1,165	36.3
Residence	Urban	766	23.9
	Rural	2442	76.1
Educational status	No education	1648	51.4
	Primary	1080	33.7
	Secondary	296	9.2
	Higher	184	5.7
Religion	Orthodox	929	29
e	Catholic	18	0.6
	Protestant	588	18.3
	Muslim	1633	50.9
	Traditional	32	1
		92	1
n '	Other T.	8	0.2
Region	l igray	261	8.1 11.6
	Alar	3/1	11.0
	Amhara	294	9.2
	Oromia	398	12.4
	Somali	321	10
	Benishangul Gumuz	289	9
	SNNPR	360	11.2
	Gambela	247	7.7
	Harari	251	7.8
	Addis Ababa	180	5.6
	Diredawa	236	7.4
Age	15-24 years	931	29
	25-34 years	1,719	53.6
	\geq 35 years	558	17.4
ANC VISIT	Yes	892	27.8
DI 0.1.1	No	2316	72.2
Place of delivery	Home	1447	45.1
	Health facility	1761	54.9
Media exposure	Yes	1561	48.6
Delinerry h	INO N-	104/	51.4
Delivery by cesarean	INO	3001	93.5
section	Yes	207	6.5
Currently breast feed	Yes	2376	74.1
	No	832	25.9

Page 21 of 21

BMJ Open

1 2 3 4 5	Current pregnant	Yes No	316 2892	9.9 90.1
6 7 8 9 10 11				
12 13 14 15 16				
17 18 19 20 21 22				
23 24 25 26 27 28				
29 30 31 32 33				
34 35 36 37 38 39				
40 41 42 43 44				
45 46 47 48 49 50				
51 52 53 54 55 56				
57 58 59 60	For pe	eer review only - http://bmjop	en.bmj.com/site/about/guic	lelines.xhtml

Table: 3 individual and community level maternal factors of zero dose children in Ethiopia

using EDHS-2019

Variables	Null mode	Model I	Model II	Model III(mixed)
ANC follow up	1			Prot
ANC IONOW-UP		1 51(0 00 2 20)		155(102235)*
		$\begin{array}{c} 1.31(0.99, 2.29) \\ \text{Reference} \end{array}$		$\begin{array}{c} 1.55(1.02, 2.5g) \\ \text{Reference} \overline{\mathbf{\sigma}} \end{array}$
Residence				n n
Rural			3 78(2 59 5 53)	2 29 (1 53 3 B)*
Urban			Reference	Reference G
Place of delivery		1.4(1.05, 1.00)		
Home		1.4(1.05, 1.88)		$1.39(1.04, 1.86)^{\circ}$
Health facility		Reference		Reference 5
Community media exposure				for
Low proportion of media exposure			1.34(1.13, 1.62)	1.39 (1.13, 1.7)*
High proportion of media exposure			Reference	Reference 8
Wealth index				L L L L L L L L L L L L L L L L L L L
Poor		2.99 (2.31, 3.87)		2.15 (1.62, 2.85)
Middle		1.3 (1.37, 2.48)		1.42 (0.94, 1.947
Rich				tex
		Reference		Reference
Current breast feeding				nd o
No		1.07(0.68, 2.12)		1.01(0.74, 1.298
Yes		Reference		Reference =
Educational status		4		nir
No education		1.27(0.97, 1.64)		1.47(1.11, 1.95)*
Primary education		0.88(0.69, 1.12)		0.95(0.75, 1.2
Secondary and above		Reference		Reference a
Current pregnancy				ning '
No		1 59 (1 01 2 51)		19(084 240)
Ves		Reference		Reference
103				
				l ilar
NI-4				· tec
Note: • statistically significant variable	es			hn
				olo
				gie
				Ś

Individual and community level maternal factors for zero dose children in Ethiopia using EDHS 2019: A mixed effect model

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085235.R1
Article Type:	Original research
Date Submitted by the Author:	23-Oct-2024
Complete List of Authors:	Agimas, Muluken Chanie; University of Gondar College of Medicine and Health Sciences, epidemiology; University of Gondar College of Medicine and Health Sciences, epidemiology Alemayehu, Meron Asmamaw; University of Gondar, Epidemiology Tesfie, Tigabu Kidie; University of Gondar, Department of Epidemiology and Biostatistics Tilahun, Werkneh Melkie ; Debre Markos University, Department of Public Health Asferie, Worku; Debre Tabor University, Departments of pediatric and neonatal Nursing Aweke, Mekuriaw Nibret; University of Gondar, Department of Nutrition ABEBE, MOGES; Debark University, Department of Nursing Yalew, Anteneh; Wolkite University, Department of Public health
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Evidence based practice, Global health, Health services research
Keywords:	IMMUNOLOGY, Immunity, Medicine, Epidemiology < INFECTIOUS DISEASES, Hospitals, Public

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

> Individual and community level maternal factors for zero dose children in Ethiopia using mini-EDHS 2019: A mixed effect model Muluken Chanie Agimas¹, Meron Asmamaw Alemayehu¹, Tigabu Kidie Tesfie¹, Werkneh Melkie Tilahun², Worku Necho Asferie⁴, Mekuriaw Nibret Aweke⁶, Moges Tadesse Abebe³, Anteneh Kassa yalew⁵ ¹Department of Epidemiology and Biostatistics, institute of public health, college of medicine and health science, university of Gondar, Gondar, Ethiopia. ²Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia. ³Department of Nursing, College of Health Science, Debark University, Debark, Ethiopia. ⁴Departments of pediatric and neonatal Nursing, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia ⁵Department of Public health, college of medicine and Health science, Wolkite University, Wolkite, Ethiopia. ⁶Department of Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Ethiopia Authors address: 1. Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com 2. Meron Asmamaw Alemayehu (MAA): merryalem101@gmail.com 3. Tigabu Kidie Tesfie (TKT): tigabukidie@gmail.com 4. Werkneh Melkie Tilahun (WMT): werkneh7wmt@gmail.com 5. Worku Necho Asferie (WNA): workunecho@gmail.com 6. Mekuriaw Nibret Aweke (MNA): mekunib@gmail.com 7. Moges Tadesse Abebe (MTA): moges7045@gmail.com 8. Anteneh Kassa yalew (AKY): antenehkassa28@gmail.com **Corresponding author:** Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

1 2

BMJ Open

3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
18
10
20
20 21
21
22
23
24
25
26
27
28
29
30
21
22
32
33
34
35
36
37
38
39
40
41
<u>4</u> 2
42
45
44
45
46
47
48
49
50
51
52
52
55
54 FF
22
56
57
58
59
60

Introduction: Zero-dose children refer to a child who has not yet received any childhood vaccines. 29 Globally, zero-dose children are the major public health problem. In sub-Saharan African 30 countries, among five children, one did not access the vaccines. But the efforts to identify the 31 factors contributing to the zero-dose child are not well addressed in Ethiopia. 32 33 **Objectives**: To assess individual and community-level maternal factors of zero-dose children in Ethiopia using mini-EDHS 2019. 34 Methods: A secondary analysis of a cross-sectional study was used among a total of 3208 35 participants. The STATA-14 was used for descriptive and multilevel binary logistic regression 36 (mixed effect model) analysis. Model selection was conducted using AIC. To identify significant 37

factors for zero-dose children, a p-value of <0.05 with 95% confidence was used.

Results: The prevalence of zero-dose children among children aged 12-35 months old was 523 (16.3%, 95%CI, 15%–17.6%). Women with no antenatal care follow-up (Adjusted odds ratio = 1.55, 95% CI: 1.02–2.35), none educated women (Adjusted odds ratio = 1.47, 95% CI: 1.11–1.95), women who gave birth at home (Adjusted odds ratio = 1.39, 95% CI: 1.04–1.86), women who had poor wealth index (Adjusted odds ratio = 2.15, 95% CI: 1.62–2.85), and women from low proportions of community media exposure (Adjusted odds ratio = 1.39, 95% CI: 1.13–1.71) were the risk factors for zero-dose children in Ethiopia.

46 Conclusion: As compared to the previous studies, the prevalence of zero-dose children was low
47 in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth index, no
48 ANC visit, and women from low proportions of community media exposure were the risk factors

for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access
for women is highly recommended to reduce zero-dose child mortality.

51 Key words: zero-dose vaccination, maternal factors, Ethiopian Demographic Health Survey,
52 Ethiopia

56 Introduction

A zero-dose vaccine child is defined as a child who does not uptake any types of vaccines [1].
Globally, the uptake of childhood vaccines prevents 2.5 million child deaths each year [2, 3]. Onefifth of sub-Saharan African children never get the vaccines [4]. Childhood vaccination is the most
cost-effective strategy for vaccine-preventable diseases like poliomyelitis, measles, pneumonia,
hepatitis B virus, diphtheria, Haemophilus influenza type B (Hib), tuberculosis, diarrhea, and
others [5, 6]. Zero-dose children are more at risk for vaccine-preventable disease [7-10].

In Africa, due to non-uptake of basic vaccines, 30 million under-five children are attacked by vaccine-preventable diseases, and 500,000 of them die each year [11]. In 2020, about 17 million under-five children in low and middle-income countries were not take any vaccines [12]. Which means the majority of zero-dose children are from low and middle-income countries, especially in African and Southeast Asian regions [13]. The proportion of zero-dose vaccines is a good indicator of the failure to achieve the national vaccination coverage goal in sub-Saharan Africa (90%) [14]. But

BMJ Open

the COVID-19 pandemic was a threat to the immunization program, which increased the numberof zero-dose children by 37% [15].

Conducting research on zero-dose vaccines is very important for evidence-based strategies, interventions, and achieving the WHO goal [16]. Additionally, searching for evidence on the burden and factors of the zero-dose vaccine is crucial for childhood disability reduction [17-19]. Among factors affecting not taking any vaccine dose are lack of attention for the zero-dose population, rural residence, and low educational status [20-22]. Ethiopia is the fourth-leading contributor to global zero-dose children, despite considerable progress in the total number of infants being immunized [23]. As previous evidence showed, the distribution of vaccination among children in Ethiopia varied across the regions, and thus the lowest proportion (21%) of vaccinated children was reported in the Somali and Afar regions, and the highest proportion (89%) of immunized children was reported in the Amhara region [24]. Even though zero-dose children in Ethiopia are a public health concern, the efforts to identify the factors contributing to the zero-dose children and its prevalence are not well addressed. Therefore, studies are needed to assess the prevalence and determinants of zero-dose children in Ethiopia. Therefore, this study aimed to determine the prevalence and identify individual and community-level factors for zero-dose children in Ethiopia using the EDHS 2019 mixed effect model.

Objectives

- To determine the prevalence of zero dose children in Ethiopia using mini-EDHS 2019
 - 88 To identify factors for zero dose children in Ethiopia using mini-EDHS 2019

89 Methods

90 Study design, area and period

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA

rasmushogescl

hool

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

The EDHS-2019 data was collected from March 21 to June 28, 2019, using a cross-sectional study design. Ethiopia is a low-income country located in the Horn of Africa, and its capital city is Addis Ababa. In Ethiopia, Dallol (128 meters above sea level) and Ras Dashen (4620 meters above sea level) are the lowest and highest latitudes above sea level, respectively [25]. Ethiopia has twelve administrative regions, namely Afar, Somalia, Harari, Amhara, Oromia, Gambela, South Ethiopia, Central Ethiopia, Tigray, Benishangul Gumuz, Sidama, and southwest Ethiopia. Addis Ababa and Dire Dawa are the two self-governed cities in Ethiopia. According to the December 27, 2023, worldometer estimate, Ethiopia has a total population of 128,073,400, and the rural population comprises about 77.9% of the total population [26]. **Population** The source population was all women who had children prior to the survey, and women who had children aged 12-35 months in the enumeration area were included in the study. Variables **Dependent variable:** Zero dose children status (Yes, No) **Independent variables:** wealth index, residence, educational status, place of delivery, cesarean delivery, religion, age of the women, ANC visit, media exposure, region, current breast feeding, current pregnancy **Clustering variable:** EDHS cluster (V001) **Operational definition Zero dose children:** are those that have not received any routine vaccine (yes for zero dose children), otherwise classified as non-zero-dose vaccines (no) [27]. Similarly, the mini-EDHS

2019 classify children as zero dose children if not received any routine vaccine and otherwiseclassified as not zero dose children.

Media exposure: was assessed based on whether people had access to read newsletters, listen to
the radio, and watch TV. Accordingly, if they have access to all three media (newsletter, radio,
and TV) at least once a week, we categorized them as "yes", otherwise "no"[28].

Sampling method and procedure

The mini-EDHS 2019 sample was stratified and selected in two stages. Each region was stratified by urban and rural areas, with a total of 21 sampling strata. A total of 305 EAs, 93 EAs in urban areas, and 212 EAs in rural areas, were selected using proportional EA size allocation techniques. In the selected EAs, household listings were conducted. Then 30 households were selected per cluster using equal-probability systematic selection techniques. Finally, a multistage sampling method was used to select 3208 participants who had children aged 12-35 months in the selected EAs. The detailed section is reported in the mini EDHS 2019 report [29].

³ 127 Data source, collection and quality assurance

We used the secondary analysis of the mini-EDHS 2019 data set. This data was collected using a pretested structured interview technique from March 21 to June 28, 2019. The location of the data was also collected using a geographic positioning system (2 kilometers for urban clusters and 5 kilometers for rural clusters). To assure the quality of the data, pretesting and training for data collectors and supervisors were conducted. The detail section on data source, collection, and quality assurance has been reported in mini EDHS 2019 [29]. For the purpose of further analysis for the current study, data was requested online from the demographic health survey international at DHS's official website, http://www.dhsprogram.com. Then the data was accessed after 2

working days. After the data was accessed, variable selection, data cleaning, weighting the sample,

recoding, and overall data management were conducted.

Data processing and statistical analysis

After accessing the data from DHS International, cleaning, recoding, sampling weight, and missing data checking were conducted using STATA software version 14. Descriptive data was displayed by bar graph table and frequency. The "Svy" command was used as the sampling weight of cluster sampling. After this, multilevel (mixed-effect) binary logistic regression was used to identify the determinants for zero-dose children. The reason we used such a model was because of the hierarchical nature of the EDHS data and the possibility of considering a natural nesting of data. We built models like the null model (a model with an intercept/no predictors), model I (level one predictors), model II (a model with level two predictors), and model III (mixed effect model). The mixed effect model is:

Let y_{ij} denote the binary outcome for an individual *i* in neighborhood *j*, and assume y_{ij} follows a Bernoulli distribution with success probability p_{ii} or Binomial $(1, p_{ii})$. Using an appropriate link function such as logit, a binary outcome can be associated with linear predictors as the following, $logit[E(y_{ij})] = logit(p_{ij}) = \alpha_0 + X_{ij}\beta + Z_j\gamma + u_j$ [30].

Where $\alpha 0$ is the regular intercept, Xij β is the product of individual-level predictors and the corresponding unknown parameters, and Zjy is the product of neighborhood-level predictors and the associated parameters. Within-neighborhood correlation is captured by uj which is usually assumed to be a normally distributed random intercept with mean 0 and variance $\sigma 2u$ [31].

To test the clustering effect, the intra-class correlation coefficient was used with a cutoff of >0.05. (>5%). For each model, Intraclass correlation (ICC (ρ) = $\sigma^2 \epsilon/(\sigma^2 \epsilon + \sigma^2 \mu)$; $\sigma^2 \mu = \pi^2/3[32]$ was calculated. The clustering variable to show the clustering effect of zero-dose children was the

3 4	159	EDHS cluster (V001). The proportional change in variance (PCV=variance of the null model
5 6	160	minus variance of the next model/variance in the null model*100), MOR=exp $\sqrt{2}$ x VA x 0.6745
7 8	161	= exp (0.95xVA) [32] and Akaike information criteria (AIC = 2k-2lnL, where k is the number of
9 10 11	162	parameters and L is the maximum value of the likelihood function of the model) were also
12 13	163	calculated. Then the best model was selected based on the lowest AIC value (Table 1). The
14 15	164	significant variables were selected using the p-value less than 0.05 at 95%CL.

Table 1: A model comparison for zero dose children in Ethiopia using mini-EDHS 2019.

) 162	parameters	and L is the maximum value of the	e likelihood funct	tion of the mode	l) were also			
2 3 163	calculated.	Then the best model was selected b	ased on the lowe	st AIC value (T	able 1). The			
164	significant	variables were selected using the p-val	ue less than 0.05	at 95%CL.				
165	Table 1: A	w model comparison for zero dose chi	ldren in Ethiopia	a using mini-EDI	HS 2019.			
Random	effect	Null model	Model I	Model II	Model III			
Variance	9	0.27	0.199	0.21	0.118			
ICC		38%	19%	31%	7.8%			
PCV (%)	Reference	26.3%	22.2%	56.3%			
MOR		19.8	1.93	3.56	1.67			
Log like	lihood	-1950	-1904	-1920	-1889			
AIC		3905	3826	3848	3801			
167 168 169	Results Characteristics of the participants Among a total of 3028 participants, about half, 1648 (51,4%), had no education. About 1447							
170	(45.1%) and 2316 (72.2%) of them gave birth at home and had no ANC visit, respectively.							
171	Furthermo	Furthermore, 1594 (49.7%) and 2442 (76.1%) of the participants had poor wealth index and were						
172	from rural	residence, respectively (Table-2).						
173	Table-2: c	haracteristics of the participants amo	ong women who	had child aged 12	2-35 months			
174	old in Eth	iopia using mini-EDHS 2019.						
	Variable	Category	Weighted frequer	ncy %				

28 29	166	
30	167	Desults
31	101	Results
32 22	168	Characteristics of the participants
33 34	100	Characteristics of the participants
35	169	Among a total of 3028 participants about half 1648 (51.4%) had no education About 1447
36	_ ,,,	

Table-2: characteristics of the participants among women who had child aged 12-35 months

old in Ethiopia using mini-EDHS 2019.

Variable	Category	Weighted frequency	%
Wealth index	Poor	1594	49.7
	Middle	449	14
	Rich	1,165	36.3
Residence	Urban	766	23.9
	Rural	2442	76.1

Educational status Religion Region	No education Primary Secondary Higher Orthodox Catholic Protestant Muslim Traditional Other Tigray Afar Amhara	1648 1080 296 184 929 18 588 1633 32 8 261 371	51.4 33.7 9.2 5.7 29 0.6 18.3 50.9 1 0.2 8.1 11.6
Religion Region	Primary Secondary Higher Orthodox Catholic Protestant Muslim Traditional Other Tigray Afar Amhara	1080 296 184 929 18 588 1633 32 8 261 371	33.7 9.2 5.7 29 0.6 18.3 50.9 1 0.2 8.1 11.6
Region	Secondary Higher Orthodox Catholic Protestant Muslim Traditional Other Tigray Afar Amhara	296 184 929 18 588 1633 32 8 261 371	9.2 5.7 29 0.6 18.3 50.9 1 0.2 8.1 11.6
Religion Region	Higher Orthodox Catholic Protestant Muslim Traditional Other Tigray Afar Amhara	184 929 18 588 1633 32 8 261 371	5.7 29 0.6 18.3 50.9 1 0.2 8.1 11.6
Religion	Orthodox Catholic Protestant Muslim Traditional Other Tigray Afar Amhara	929 18 588 1633 32 8 261 371	29 0.6 18.3 50.9 1 0.2 8.1 11.6
Region	Catholic Protestant Muslim Traditional Other Tigray Afar Amhara	18 588 1633 32 8 261 371	0.6 18.3 50.9 1 0.2 8.1 11.6
Region	Protestant Muslim Traditional Other Tigray Afar Amhara	18 588 1633 32 8 261 371	18.3 50.9 1 0.2 8.1 11.6
Region	Muslim Traditional Other Tigray Afar Amhara	388 1633 32 8 261 371	18.5 50.9 1 0.2 8.1 11.6
Region	Traditional Other Tigray Afar Amhara	1633 32 8 261 371	50.9 1 0.2 8.1 11.6
Region	Traditional Other Tigray Afar Amhara	32 8 261 371	1 0.2 8.1 11.6
Region	Other Tigray Afar Amhara	8 261 371	0.2 8.1 11.6
Region	Tigray Afar Amhara	261 371	8.1 11.6
	Afar Amhara	371	11.6
	Amhara		11.0
		294	9.2
	Oromia	398	12.4
	Somali	321	10
	Benishangul Gumuz	280	0
	SNINDD	269	, 11)
	Gambala	300 247	11.2
	Uanori	247	7.7
	Addig Ababa	180	7.0
	Adulis Ababa	180	5.0
	Diredawa	236	7.4
Age	15-24 years	931	29 52 (
	25-34 years	1,/19	53.6
	\geq 35 years	558	17.4
ANC VISIT	Yes	892	27.8
D1 C 1 1	NO	2316	/2.2
Place of delivery	Home	144/	45.1
	Health facility	1/61	54.9
Media exposure	Yes	1561	48.6
Dellaran h	INO N -	104/	51.4
Delivery by cesarean	INO	3001	93.5
section	Yes	207	6.5
Currently breast feed	Yes	2376	74.1
	No	832	25.9
Current pregnant	Yes	316	9.9
	No	2892	90.1
Prevalence of zero dose	e children in Ethiopia		
The prevalence of zero d	lose children among chi	ldren aged 12-35 mont	ths old was 16
15%–17.6%) (Fig-1).			
	Age ANC visit Place of delivery Media exposure Delivery by cesarean section Currently breast feed Current pregnant Prevalence of zero dose The prevalence of zero dose 15%–17.6%) (Fig-1).	Benishangul Gumuz SNNPR Gambela Harari Addis AbabaAgeDiredawa 15-24 years ≥ 35 yearsAge15-24 years ≥ 35 yearsANC visitYes Health facilityMedia exposureYes NoDelivery by cesarean SectionNoSectionYes NoCurrently breast feed NoYes NoPrevalence of zero dose children in EthiopiaThe prevalence of zero dose children among children15%-17.6%) (Fig-1).	Benishangul Gumuz289 SNNPRSNNPR360 Gambela247 HarariHarari251 Addis Ababa180 DiredawaAge15-24 years931 25-34 years $25-34$ years1,719 ≥ 35 years558 S8ANC visitYes892 NoPlace of deliveryHome1447 Health facilityMedia exposureYes1561 NoNo1647Delivery by cesarean No3001 sectionsectionYes2376 NoNo832 207Current pregnantYesYes316 NoNo2892

(95%CI,

Page 11 of 20

BMJ Open

170	Fig.1: Prevalence of zero dose children in Ethionia using mini-FDHS 2019
1/9	Fig-1. I revalence of zero dose children in Ethiopia using mini-ED115 2019.

180 Factors associated with zero dose children

In the multivariable multilevel binary logistic regression analysis, wealth index, educational status, place of delivery, residence, media exposure, and ANC visit were the significant factors for zero-dose children in Ethiopia at a p-value of less than 0.05. Women with no ANC follow-up was 1.55 (AOR = 1.55, 95% CI: 1.02-2.35, p-value of < 0.001) times higher odds of zero does child than who had an ANC visit. Women with no education were 1.47 (AOR =1.47, 95% CI: 1.11–1.95, p-value of 0.0067) times higher odds of zero dose child than those who had secondary and above educational levels. Women who gave birth at home were 1.39 (AOR =1.39, 95% CI: 1.04–1.86, p-value of < 0.001) times higher odds of zero dose child than women who gave birth at the health facility. Women who had a poor wealth index were also 2.15 times (AOR = 2.15, 95% CI: 1.62– 2.85, p-value of 0.0078) higher odds of zero-dose child than rich women. Also, women from a low proportion of community media exposure were 1.39 (AOR =1.39, 95% CI: 1.13–1.71, p-value of < 0.001) times higher odds of a zero-dose child than women from a high proportion of community media exposure. Furthermore, the women from the rural residence were 2.29 (AOR =2.29, 95% CI: 1.53-3.42, p-value of 0.004) times higher odds of zero-dose child than those among urban women (Table-3).

using mini-EDHS-201	9				-
Variables	Null model	Model I	Model II	Model III(mixed)	p-value
ANC follow-up					
No		1.51(0.99, 2.29)		1.55(1.02, 2.35)*	< 0.001
Yes		Reference		Reference	
Residence					
Rural			3.78(2.59,	2.29 (1.53, 3.42)*	0.004
Urban			5.53)	Reference	

Table: 3 individual and community level maternal factors of zero dose children in Ethiopia
		Reference		
Place of delivery				
Home	1.4(1.05, 1.88)		1.39 (1.04, 1.86)*	< 0.00
Health facility	Reference		Reference	
Community media				
exposure		1.34(1.13,	1.39 (1.13, 1.71)*	< 0.00
Low proportion of media		1.62)	Reference	
exposure		Reference		
High proportion of media				
exposure				
Wealth index				
Poor	2.99 (2.31, 3.87)		2.15 (1.62, 2.85)*	0.007
Middle	1.3 (1.37, 2.48)		1.42 (0.94, 1.94)	
Rich				
~	Reference		Reference	
Current breast feeding				
No	1.07(0.68, 2.12)		1.01(0.74, 1.29)	0.21
Yes	Reference		Reference	
Educational status				
No education	1.27(0.97, 1.64)		1.47(1.11, 1.95)*	0.006
Primary education	0.88(0.69, 1.12)		0.95(0.75, 1.21)	
Secondary and above	Reference		Reference	
Current pregnancy				
No	1.59 (1.01,2.51)		1.9 (0.84, 2.49)	0.34
Yes	Reference		Reference	

199 Discussion

The prevalence of zero dose children among children aged 12-35 months old was 16.3%. Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and women from low proportions of community media exposure were the risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose children. Thus, the prevalence of zero dose children among children aged 12-35 months old was 16.3% (95% CI, 15%–17.6%). This finding was in line with a study conducted in Sub-Saharan Africa (16.5%) [1]. But it was lower than a study conducted in Page 13 of 20

BMJ Open

Togo (26.88%) [33] and the WHO/UNICEF Estimates of National Immunization Coverage 2021 report, which estimated that 30% of surviving infants in Ethiopia were zero-dose children [34]. This might be because in the previous study, the vaccination card was considered to declare the vaccination status of the child, but the mother's report was not considered. This may overestimate the previous finding. The current finding was also lower than a study conducted in Cameroon (91.7%) [35]. The possible reason for the discrepancy might be that the study done in Cameroon was conducted in an area where access to health services is very low (the remote rural districts, the homeless population, and immigrants). This segment of the population is suffering from a lack of basic health services, including immunization. This causes a higher prevalence of zero dose children among children. In Ethiopia between 2000 and 2019, the basic vaccination coverage had progressed from 14.3% to 44.1%. The vaccination coverage was estimated to reach 53.6% by 2025; the reduction in zero dose child implies a significant improvement in vaccination coverage [36].

220 [36].

Regarding the factors associated with a zero-dose child, it was found that the odds of a zero-dose vaccine were higher among women who delivered at home than those who delivered at a health facility. This finding was supported by a study conducted in Cameroon [35], a study conducted in sub-Saharan Africa [1] and Ethiopia [37]. This can be explained by the fact that women who give birth at home miss childhood vaccines, including birth doses, and they may not get counselling on childhood vaccines, such as the advantages of vaccination, schedules of vaccine doses, and other related information. Moreover, home delivery may have a negative effect on the subsequent health-seeking behavior of women

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

The odds of a zero-dose child among poor wealth index women were more likely than those among rich wealth index women. This was supported by a study conducted in low- and middle-income countries [38]. This may be justified by the fact that women with low socioeconomic status have a lower acceptability of health-related messages and a lower understanding of the vaccination advantage [39]. Also, women who had no ANC follow-up were more likely to not vaccinate their child at all than women who had ANC follow-up. This finding is supported by a study conducted in India [40] and a study conducted among 82 low- and middle-income countries [41]. This might be associated with the fact that women who do not attend ANC could not get counselling and education services about the advantages and the time schedule of all basic vaccine doses. Alternatively, women who do not attend the ANC service are more likely to not attend health services after birth as well.

Additionally, the odds of zero-dose children among women who were from low proportions of community media exposure were higher than those among women who were from high proportions of community media exposure. This finding was supported by a study conducted in Indonesia [42]. The possible justification for this association may be due to a lack of media access in the community, which could negatively affect knowledge about the advantages and schedule of the childhood vaccine. Alternatively, women who are from low-community media exposure may miss key information released through media outlets. In return, they are more prone to not vaccinating all doses of vaccine for their children. Additionally, mass media exposure, such as through television, radio, newspapers, and the internet, in the community plays an important role in changing the community's attitude, opinion, awareness, and health service-seeking behavior. But women with a low proportion of community media exposure may lack these advantages. In addition, women who had no education also had higher odds of not vaccinating all doses of

Page 15 of 20

BMJ Open

252	vaccines for their child than women who had secondary or higher educational levels. A previous
253	study conducted in Nigeria also reported that as educational levels increased, the zero-dose vaccine
254	status decreased [43]. This may be because educational status is highly correlated with the
255	knowledge and acceptance rate of vaccination [44]. Additionally, low educational status could be
256	a barrier to accessing health services, including childhood vaccination. Furthermore, this study
257	revealed that women who were from rural areas were more likely to not vaccinate their children at
258	all than urban women. The access to health services is quite different between urban and rural [45].
259	This is due to the barriers to accessing preventive services in the rural areas, for example, lack of
260	transportation, the far distance of health institutions, and the lack of adequate health professionals
261	in rural areas who deliver the service [46, 47]. This study has several implications by providing an
262	important tool for designing strategies and policies to reduce the number of zero-dose children in
263	Ethiopia. Therefore, expanding maternal health services and media access for women is highly
264	recommended to reduce zero-dose child.
265	Strength and limitation of the study
266	• Using nationally representative sample increases the power of the study.
267	• Additionally, proportional allocation of sample for each cluster and weighting the sample
268	makes the study nationally representative.
269	• But because we used secondary data and a cross-sectional study design, our study shared
270	the limitations of the secondary data and the cross-sectional study.

⁷ 271 Conclusion

As compared to the previous studies, the prevalence of zero dose children was low in Ethiopia.
 Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and
 women from low proportions of community media exposure were the risk factors for zero-dose

Page 16 of 20

BMJ Open

2						
3 4	275	children in Ethiopia. Therefore, expanding maternal health services and media access for women				
5 6	276	is highly recommended to reduce zero-dose child.				
7 8	277	Ethical declaration				
9 10 11	278	Ethical approval				
12 13	279	Since it was a secondary data analysis of EDHS, informed consent from the participants was not				
14 15	280	applicable. Rather, data requests and approval for access were obtained from DHS International.				
16 17 18	281	All data were fully anonymized before we accessed informed consent from DHS international.				
19 20	282	Consent for publication				
21 22	283	Not required.				
23 24	284	Data availability statement				
25 26 27	285	All relevant data is available in the manuscript.				
28 29	286	Conflict of interest				
30 31	287	The author declares no conflict of interest				
32 33 34	288	Funding				
35 36	289	No				
37 38	290	Acknowledgments				
39 40 41	291	The authors would like to give thanks to DHS International for accessing the data.				
42 43	292	Author Contributions				
44 45	293	Conceptualization: Muluken Chanie Agimas				
46 47 48	 46 47 294 Formal analysis: Muluken Chanie Agimas, Meron Asmamaw Alemayewhu, Tigabu Kid 					
48 49 50	295	Werkneh Melkie Tilahun				
51 52	296	Investigation: Muluken Chanie Agimas and Meron Asmamaw Alemayewhu				
53 54						
55 56						
57 58		15				
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

BMJ Open

2 3 4	297	Methodology: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
5 6	298	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
7 8	299	Software: Muluken Chanie Agimas, Werkneh Melkie Tilahun, Worku Necho Asferie, Mekuriaw
9 10 11	300	Nibret Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
12 13	301	Supervision: Muluken Chanie Agimas, Anteneh Kassa yalew
14 15 16	302	Validation: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
16 17 18	303	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
19 20	304	Visualization: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
21 22	305	Tadesse Abebe, Anteneh Kassa yalew
23 24 25	306	Writing – review & editing: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret
26 27	307	Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Meron Asmamaw Alemayewhu, Tigabu
28 29	308	Kidie Tesfie
30 31 22	309	Muluken chanie Agimas (MCA) is guarantor of this article.
32 33 34	310	Abbreviation and acronym
35 36	311	AICAkaike information criteria
37 38	312	ANCAntenatal Care
39 40 41	313	DHSDemographic Health Survey
42 43	314	EAsEnumeration Areas
44 45 46	315	EDHSEthiopian Demographic Health Survey
40 47 48	316	LLRLog Likelihood Ratio
49 50	317	SNNPRSouth Nation and Nationality of People Representative
51 52 53	318	VPDsVaccine Preventable Diseases
53 54 55	319	Reference
56 57		
58 59		16
60		Tor peer review only intep.//binjopen.binj.com/site/about/guidelines.xittin

1			
2			
כ ∧	320	1.	Ozigbu, C.E., et al., Correlates of Zero-Dose Vaccination Status among Children Aged 12–59
4 5	321		Months in Sub-Saharan Africa: A Multilevel Analysis of Individual and Contextual Factors. 2022.
6	322		10 (7): p. 1052.
7	323	2.	Antai, D.J.B.i.d., Inequitable childhood immunization uptake in Nigeria: a multilevel analysis of
8	324		individual and contextual determinants. 2009. 9 : p. 1-10.
9	325	3.	Wiysonge, C.S., et al., Individual and contextual factors associated with low childhood
10	326		immunisation coverage in sub-Saharan Africa: a multilevel analysis. 2012. 7 (5): p. e37905.
11	327	4.	Bobo, F.T., et al., Child vaccination in sub-Saharan Africa: Increasing coverage addresses
12	328		<i>inequalities.</i> 2022. 40 (1): p. 141-150.
13	329	5.	Fokoun, C.J.H.V. and Immunotherapeutics, <i>Strategies implemented to address vaccine hesitancy</i>
14	330		<i>in France: a review article.</i> 2018. 14 (7): p. 1580-1590.
15	331	6.	Nathanson, N. and O.M.J.A.j.o.e. Kew, From emergence to eradication: the epidemiology of
10	332		poliomvelitis deconstructed. 2010. 172 (11): p. 1213-1229.
12	333	7.	Kretsinger, K., et al., Polio eradication in the World Health Organization African Region, 2008–
19	334		2012, 2014, 210 (suppl_1): p. \$23-\$39.
20	335	8	Waziri, N.F., et al., Polio eradication in Nigeria and the role of the National Ston Transmission of
21	336	0.	Polio program 2012–2013 2014 210 (suppl 1): n \$111-\$117
22	337	9	Brownwright TK 7 M Dodson and W G LB n h van Panhuis Snatial clustering of measles
23	338	5.	vaccination coverage among children in sub-Saharan Africa 2017 17 (1): n 1-7
24	330	10	Wobudeva E et al Enidemiology of tuberculosis in children in Kampala district Llagnda 2000-
25	310	10.	2010: a retrospective cross-sectional study 2015 15 : p. 1-8
26	2/1	11	Mibigo P. et al. Pouting immunization in the WHO African region: progress, challenges and way
2/	541 242	11.	forward 2015 10(2): p 2.7
28	54Z	10	Jorward, 2015. 19(2). p. 2-7.
29	343	12.	Organization, W.H., WHO UNICEF coverage estimates who world Health Organization:
30	344		Immunization, vaccines and Biologicals. vaccine preventable diseases vaccines monitoring system
32	345	4.2	2019 Global Summary Reference Time Series: DTP3.[Cited 2020 Feb 12]. 2012.
33	346	13.	Rachlin, A., et al., <i>Routine vaccination coverage—worldwide, 2021.</i> 2022. /1 (44): p. 1396.
34	347	14.	Jheeta, M. and J.J.B.o.t.W.H.O. Newell, Childhood vaccination in Africa and Asia: the effects of
35	348		parents' knowledge and attitudes. 2008, SciELO Public Health. p. 419-419A.
36	349	15.	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC), progress and challenges
37	350		with Achieving Universal Immunization Coverage, URL:
38	351		https://www.who.int/publications/m/item/progress-and-challenges
39	352	2022	
40	352	16	Chido-Amaiyovi O.G. et al. Prevalence and correlates of never vaccinated Nigerian children aged
41	222	10.	1 Events 2018 26(46): p. 6052 6060
42 43	354 255	17	1-5 yeurs. 2010. 30 (40). p. 0955-0900.
44	300	17.	Cald-Preta, B.O., et al., Zero-dose children und the immunisation cascade: understanding
45	350	10	Initialisation pathways in low and made-income countries. 2021. 39 (32): p. 4564-4570.
46	357	18.	Arambepola, R., et al., Using geospatial models to map zero-dose children: Factors associated with
47	358		zero-dose vaccination status before and after a mass measles and rubella vaccination campaign
48	359		in Southern province, Zambia. 2021. 6 (12): p. e007479.
49	360	19.	Galles, N.C., et al., Measuring routine childhood vaccination coverage in 204 countries and
50	361		territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release
51	362		<i>1</i> . 2021. 398 (10299): p. 503-521.
52	363	20.	Murhekar, M.V. and M.S.J.T.L.G.H. Kumar, Reaching zero-dose children in India: Progress and
53	364		challenges ahead. 2021. 9 (12): p. e1630-e1631.
54 55			
56			
57			
54 55 56 57			

58

59

BMJ Open

1 2			
3	365	21	Johri M S Rainal and SITIGH Subramanian Progress in reaching unvaccingted (zero-dose)
4	266	21.	children in India 1002–2016: a multiloyal appondial analysis of repeated cross sectional surveys
5	267		2021 $\mathbf{q}(12)$ \mathbf{n} $\mathbf{q}(12)$ \mathbf{n} $\mathbf{q}(12)$
6	269		2021 , $\mathbf{g}(12)$, \mathbf{p} , $e1097$ - $e1700$. VanderEnde K, et al. <i>Clobal routine vaccination covarage</i> 2017, 2018, 67 (45); p. 1261
7	200	22.	Valuel Elide, K., et al., Global routine Vaccination coverage—2017. 2018. 67 (45), p. 1201.
8	369	23.	Garcia-Woreno, C., et al., Giobal and regional estimates of violence against women: prevalence
9	370		and health effects of intimate partner violence and non-partner sexual violence. 2013: World
10	3/1		Health Organization.
11	372	24.	Nour, I.Y., et al., Predictors of immunization coverage among 12–23 month old children in
12	3/3		Ethiopia: systematic review and meta-analysis. 2020. 20 (1): p. 1-19.
14	374	25.	Alfaro-Murillo, J.A., et al., The case for replacing live oral polio vaccine with inactivated vaccine in
15	375		the Americas. 2020. 395 (10230): p. 1163-1166.
16	376	26.	Kanté, A.M., et al., Factors associated with compliance with the recommended frequency of
17	377		postnatal care services in three rural districts of Tanzania. 2015. 15 : p. 1-10.
18	378	27.	Azie, J.I., et al., Reaching zero-dose children. 2024. 8(85): p. 85.
19	379	28.	Fetene, S.M., T.J.B.P. Gebremedhin, and Childbirth, Uptake of postnatal care and its determinants
20	380		in Ethiopia: a positive deviance approach. 2022. 22 (1): p. 601.
21	381	29.	Indicators, K.J.E. and ICF, <i>Mini demographic and health survey</i> . 2019.
22	382	30.	H., A., A new look at the statistical model identification. IEEE transactions on automatic control.
23 24	383		;19(6):716-23. 1974 Dec.
25	384	31.	H., G., Multilevel statistical models. John Wiley & Sons; 2011 Jul 8.
26	385	32.	Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: using
27	386		measures of clustering in multilevel logistic regression to investigate contextual phenomena. 2006.
28	387		60 (4): p. 290-297.
29	388	33.	Mangbassim, N.T., et al., Prevalence and factors associated with "zero-dose" in children 12 to 23
30	389		months in Togo. 2023. 9 : p. 12.
31	390	34.	WHO/UNICEF. national immunization estimate. 2021.
32	391	35.	Nchinjoh, S.C., et al., Factors Associated with Zero-Dose Childhood Vaccination Status in a Remote
33 24	392		Fishing Community in Cameroon: A Cross-Sectional Analytical Study. 2022. 10 (12): p. 2052.
34	393	36.	Berhanel, Y., A. Bekele, and F.J.E.M.J. Tesfaye,, Immunization (EPI) in Ethiopia: acceptance,
36	394		coverage, and sustainability. 2000. 38: p. 1-60.
37	395	37.	Moyer, C.A., et al., The relationship between facility delivery and infant immunization in Ethiopia.
38	396		2013. 123 (3): p. 217-220.
39	397	38.	Hajizadeh, M.J.J.E.C.H., Socioeconomic inequalities in child vaccination in low/middle-income
40	398		countries: what accounts for the differences? 2018.
41	399	39.	Glewwe, P.J.J.o.h.r., Why does mother's schooling raise child health in developing countries?
42	400		Evidence from Morocco. 1999: p. 124-159.
43	401	40.	Krishnamoorthy, Y. and T.J.F.P. Rehman, Impact of antenatal care visits on childhood
44 15	402		immunization: a propensity score-matched analysis using nationally representative survey. 2022.
46	403		39 (4): p. 603-609.
47	404	41.	Farrenkopf, B.A., et al., Understanding household-level risk factors for zero dose immunization in
48	405		82 low-and middle-income countries. 2023. 18 (12): p. e0287459.
49	406	42.	Machmud, P.B., et al., Mother's Media Use and Children's Vaccination Status in Indonesia: A
50	407		Community-Based Cross-Sectional Study, 2022, 9 : p. 2333794X221092740.
51	408	43.	Sato, R.I.V., Geospatial and Time Trend of Prevalence and Characteristics of Zero-Dose Children in
52	409		Nigeria from 2003 to 2018, 2022, 10 (9): p. 1556
53	410	44	Forshaw, J., et al., The global effect of maternal education on complete childhood vaccination: a
54	411		systematic review and meta-analysis 2017. 17 (1): n 1-16
55 56			systematic review and meta analysis. 2017. 17(1), p. 1 10.
57			

1 2			
2 3	412	45	Douthit, N., et al., Exposing some important harriers to health care access in the rural USA_2015
4	413	45.	129 (6): p. 611-620.
5	414	46.	Grant, R., et al., Transportation barriers to child health care access remain after health reform.
6 7	415		2014. 168 (4): p. 385-386.
7 8	416	47.	Weigel, P.A., et al., Variation in primary care service patterns by rural-urban location. 2016. 32 (2):
9	417		p. 196-203.
10			
11	418		
12			
13 14			
15			
16			
17			
18			
19 20			
20			
22			
23			
24			
25 26			
27			
28			
29			
30			
31 32			
33			
34			
35			
36 27			
37 38			
39			
40			
41			
42			
45 44			
45			
46			
47			
48 ⊿o			
49 50			
51			
52			
53			
54 55			
56			
57			
58			19
59			For poor rovious only http://bmiopon.hmi.com/cita/ahout/cuidalines.yhtml
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntml

Fig-1: Prevalence of zero dose children in Ethiopia using EDHS 2019.

Individual and community level maternal factors for zero dose children in Ethiopia using EDHS 2019: A mixed effect model

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085235.R2
Article Type:	Original research
Date Submitted by the Author:	06-Nov-2024
Complete List of Authors:	Agimas, Muluken Chanie; University of Gondar College of Medicine and Health Sciences, epidemiology; University of Gondar College of Medicine and Health Sciences, epidemiology Alemayehu, Meron Asmamaw; University of Gondar, Epidemiology Tesfie, Tigabu Kidie; University of Gondar, Department of Epidemiology and Biostatistics Tilahun, Werkneh Melkie ; Debre Markos University, Department of Public Health Asferie, Worku; Debre Tabor University, Departments of pediatric and neonatal Nursing Aweke, Mekuriaw Nibret; University of Gondar, Department of Nutrition ABEBE, MOGES; Debark University, Department of Nursing Yalew, Anteneh; Wolkite University, Department of Public health
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Evidence based practice, Global health, Health services research
Keywords:	IMMUNOLOGY, Immunity, Medicine, Epidemiology < INFECTIOUS DISEASES, Hospitals, Public

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez ony

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Individual and community level maternal factors for zero dose children in Ethiopia using

> mini-EDHS 2019: A mixed effect model Muluken Chanie Agimas¹, Meron Asmamaw Alemayehu¹, Tigabu Kidie Tesfie¹, Werkneh Melkie Tilahun², Worku Necho Asferie⁴, Mekuriaw Nibret Aweke⁶, Moges Tadesse Abebe³, Anteneh Kassa yalew⁵ ¹Department of Epidemiology and Biostatistics, institute of public health, college of medicine and health science, university of Gondar, Gondar, Ethiopia. ²Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia. ³Department of Nursing, College of Health Science, Debark University, Debark, Ethiopia. ⁴Departments of pediatric and neonatal Nursing, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia ⁵Department of Public health, college of medicine and Health science, Wolkite University, Wolkite, Ethiopia. ⁶Department of Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Ethiopia Authors address: 1. Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com 2. Meron Asmamaw Alemayehu (MAA): merryalem101@gmail.com 3. Tigabu Kidie Tesfie (TKT): tigabukidie@gmail.com 4. Werkneh Melkie Tilahun (WMT): werkneh7wmt@gmail.com 5. Worku Necho Asferie (WNA): workunecho@gmail.com 6. Mekuriaw Nibret Aweke (MNA): mekunib@gmail.com 7. Moges Tadesse Abebe (MTA): moges7045@gmail.com 8. Anteneh Kassa yalew (AKY): antenehkassa28@gmail.com **Corresponding author:** Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Abstract

BMJ Open

Introduction: Zero-dose children refer to a child who has not yet received any childhood vaccines.

30	Globally, zero-dose children are the major public health problem. In sub-Saharan African
31	countries, among five children, one did not access the vaccines. But the efforts to identify the
32	factors contributing to the zero-dose child are not well addressed in Ethiopia.
33	Objectives: To assess individual and community-level maternal factors of zero-dose children in
34	Ethiopia using mini-EDHS 2019.
35	Methods: A secondary analysis of a cross-sectional study was used among a total of 3208
36	participants. The STATA-14 was used for descriptive and multilevel binary logistic regression
37	(mixed effect model) analysis. Model selection was conducted using AIC. To identify significant
38	factors for zero-dose children, a p-value of <0.05 with 95% confidence was used.
39	Results: The prevalence of zero-dose children among children aged 12-35 months old was 523
40	(16.3%, 95%CI, 15%–17.6%). Women with no antenatal care follow-up (Adjusted odds ratio =
41	1.55, 95% CI: 1.02–2.35), none educated women (Adjusted odds ratio = 1.47, 95% CI: 1.11–1.95),
42	women who gave birth at home (Adjusted odds ratio = 1.39, 95% CI: 1.04–1.86), women who had
43	poor wealth index (Adjusted odds ratio = 2.15, 95% CI: 1.62-2.85), and women from low
44	proportions of community media exposure (Adjusted odds ratio = $1.39, 95\%$ CI: $1.13-1.71$) were

45 the risk factors for zero-dose children in Ethiopia.

46 Conclusion: As compared to the previous studies, the prevalence of zero-dose children was low
47 in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth index, no
48 ANC visit, and women from low proportions of community media exposure were the risk factors

Page 4 of 19

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

> for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access

for women is highly recommended to reduce zero-dose child mortality.

Key words: zero-dose vaccination, maternal factors, Ethiopian Demographic Health Survey, Ethiopia

- Strength and limitation of the study
 - Using nationally representative sample increases the power of the study.
 - Additionally, proportional allocation of sample for each cluster and weighting the sample makes the study nationally representative.
 - But because we used secondary data and a cross-sectional study design, our study shared the limitations of the secondary data and the cross-sectional study.

Introduction

A zero-dose vaccine child is defined as a child who does not uptake any types of vaccines [1]. Globally, the uptake of childhood vaccines prevents 2.5 million child deaths each year [2, 3]. One-fifth of sub-Saharan African children never get the vaccines [4]. Childhood vaccination is the most cost-effective strategy for vaccine-preventable diseases like poliomyelitis, measles, pneumonia, hepatitis B virus, diphtheria, Haemophilus influenza type B (Hib), tuberculosis, diarrhea, and others [5, 6]. Zero-dose children are more at risk for vaccine-preventable disease [7-10].

In Africa, due to non-uptake of basic vaccines, 30 million under-five children are attacked by vaccine-preventable diseases, and 500,000 of them die each year [11]. In 2020, about 17 million under-five children in low and middle-income countries were not take any vaccines [12]. Which means the majority of zero-dose children are from low and middle-income countries, especially in African and Southeast Asian regions [13]. The proportion of zero-dose vaccines is a good indicator of the

failure to achieve the national vaccination coverage goal in sub-Saharan Africa (90%) [14]. But
the COVID-19 pandemic was a threat to the immunization program, which increased the number
of zero-dose children by 37% [15].

Conducting research on zero-dose vaccines is very important for evidence-based strategies, interventions, and achieving the WHO goal [16]. Additionally, searching for evidence on the burden and factors of the zero-dose vaccine is crucial for childhood disability reduction [17-19]. Among factors affecting not taking any vaccine dose are lack of attention for the zero-dose population, rural residence, and low educational status [20-22]. Ethiopia is the fourth-leading contributor to global zero-dose children, despite considerable progress in the total number of infants being immunized [23]. As previous evidence showed, the distribution of vaccination among children in Ethiopia varied across the regions, and thus the lowest proportion (21%) of vaccinated children was reported in the Somali and Afar regions, and the highest proportion (89%) of immunized children was reported in the Amhara region [24]. Even though zero-dose children in Ethiopia are a public health concern, the efforts to identify the factors contributing to the zero-dose children and its prevalence are not well addressed. Therefore, studies are needed to assess the prevalence and determinants of zero-dose children in Ethiopia. Therefore, this study aimed to determine the prevalence and identify individual and community-level factors for zero-dose children in Ethiopia using the EDHS 2019 mixed effect model.

89 Objectives

- 90 To determine the prevalence of zero dose children in Ethiopia using mini-EDHS 2019
- 91 To identify factors for zero dose children in Ethiopia using mini-EDHS 2019
- 92 Methods

93 Study design, area and period

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

The EDHS-2019 data was collected from March 21 to June 28, 2019, using a cross-sectional study design. Ethiopia is a low-income country located in the Horn of Africa, and its capital city is Addis Ababa. In Ethiopia, Dallol (128 meters above sea level) and Ras Dashen (4620 meters above sea level) are the lowest and highest latitudes above sea level, respectively [25]. Ethiopia has twelve administrative regions, namely Afar, Somalia, Harari, Amhara, Oromia, Gambela, South Ethiopia, Central Ethiopia, Tigray, Benishangul Gumuz, Sidama, and southwest Ethiopia. Addis Ababa and Dire Dawa are the two self-governed cities in Ethiopia. According to the December 27, 2023, worldometer estimate, Ethiopia has a total population of 128,073,400, and the rural population comprises about 77.9% of the total population [26]. **Population** The source population was all women who had children prior to the survey, and women who had children aged 12-35 months in the enumeration area were included in the study. Variables **Dependent variable:** Zero dose children status (Yes, No) **Independent variables:** wealth index, residence, educational status, place of delivery, cesarean delivery, religion, age of the women, ANC visit, media exposure, region, current breast feeding, current pregnancy **Clustering variable:** EDHS cluster (V001) **Operational definition Zero dose children:** are those that have not received any routine vaccine (yes for zero dose children), otherwise classified as non-zero-dose vaccines (no) [27]. Similarly, the mini-EDHS

2019 classify children as zero dose children if not received any routine vaccine and otherwiseclassified as not zero dose children.

Media exposure: was assessed based on whether people had access to read newsletters, listen to
the radio, and watch TV. Accordingly, if they have access to all three media (newsletter, radio,
and TV) at least once a week, we categorized them as "yes", otherwise "no"[28].

Sampling method and procedure

The mini-EDHS 2019 sample was stratified and selected in two stages. Each region was stratified by urban and rural areas, with a total of 21 sampling strata. A total of 305 EAs, 93 EAs in urban areas, and 212 EAs in rural areas, were selected using proportional EA size allocation techniques. In the selected EAs, household listings were conducted. Then 30 households were selected per cluster using equal-probability systematic selection techniques. Finally, a multistage sampling method was used to select 3208 participants who had children aged 12-35 months in the selected EAs. The detailed section is reported in the mini EDHS 2019 report [29].

³ 129 **Data source, collection and quality assurance**

We used the secondary analysis of the mini-EDHS 2019 data set. This data was collected using a pretested structured interview technique from March 21 to June 28, 2019. The location of the data was also collected using a geographic positioning system (2 kilometers for urban clusters and 5 kilometers for rural clusters). To assure the quality of the data, pretesting and training for data collectors and supervisors were conducted. The detail section on data source, collection, and quality assurance has been reported in mini EDHS 2019 [29]. For the purpose of further analysis for the current study, data was requested online from the demographic health survey international at DHS's official website, http://www.dhsprogram.com. Then the data was accessed after 2

working days. After the data was accessed, variable selection, data cleaning, weighting the sample,

recoding, and overall data management were conducted.

Data processing and statistical analysis

After accessing the data from DHS International, cleaning, recoding, sampling weight, and missing data checking were conducted using STATA software version 14 and there was no missing data. Descriptive data was displayed by bar graph table and frequency. The "Svy" command was used as the sampling weight of cluster sampling. After this, multilevel (mixed-effect) binary logistic regression was used to identify the determinants for zero-dose children. The reason we used such a model was because of the hierarchical nature of the EDHS data and the possibility of considering a natural nesting of data. We built models like the null model (a model with an intercept/no predictors), model I (level one predictors), model II (a model with level two predictors), and model III (mixed effect model). The mixed effect model is:

Let y_{ij} denote the binary outcome for an individual *i* in neighborhood *j*, and assume y_{ij} follows a Bernoulli distribution with success probability p_{ii} or Binomial $(1, p_{ii})$. Using an appropriate link function such as logit, a binary outcome can be associated with linear predictors as the following, $logit[E(y_{ij})] = logit(p_{ij}) = \alpha_0 + X_{ij}\beta + Z_j\gamma + u_j$ [30].

Where $\alpha 0$ is the regular intercept, Xij β is the product of individual-level predictors and the corresponding unknown parameters, and Zjy is the product of neighborhood-level predictors and the associated parameters. Within-neighborhood correlation is captured by uj which is usually assumed to be a normally distributed random intercept with mean 0 and variance $\sigma 2u$ [31].

To test the clustering effect, the intra-class correlation coefficient was used with a cutoff of >0.05. (>5%). For each model, Intraclass correlation (ICC (ρ) = $\sigma^2 \epsilon/(\sigma^2 \epsilon + \sigma^2 \mu)$; $\sigma^2 \mu = \pi^2/3[32]$ was calculated. The clustering variable to show the clustering effect of zero-dose children was the

EDHS cluster (V001). The proportional change in variance (PCV=variance of the null model minus variance of the next model/variance in the null model*100), MOR=exp $\sqrt{2}$ x VA x 0.6745 $= \exp(0.95 \text{xVA})$ [32] and Akaike information criteria (AIC = 2k-2lnL, where k is the number of parameters and L is the maximum value of the likelihood function of the model) were also calculated. Then the best model was selected based on the lowest AIC value (Table 1). The significant variables were selected using the p-value less than 0.05 at 95%CL.

Table 1: A model comparison for zero dose children in Ethiopia using mini-EDHS 2019.

19 20	Random effect	Null model	Model I	Model II	Model III
20	Variance	0.27	0.199	0.21	0.118
22	ICC	38%	19%	31%	7.8%
23	PCV (%)	Reference	26.3%	22.2%	56.3%
24	MOR	19.8	1.93	3.56	1.67
26	Log likelihood	-1950	-1904	-1920	-1889
27	AIC	3905	3826	3848	3801
28	168				·

CLIP

Results

- **Characteristics of the participants**
- Among a total of 3028 participants, about half, 1648 (51.4%), had no education. About 1447

(45.1%) and 2316 (72.2%) of them gave birth at home and had no ANC visit, respectively.

Furthermore, 1594 (49.7%) and 2442 (76.1%) of the participants had poor wealth index and were

from rural residence, respectively (Table-2).

Table-2: characteristics of the participants among women who had child aged 12-35 months

old in Ethiopia using mini-EDHS 2019.

Variable	Category	Weighted frequency	%
Wealth index	Poor	1594	49.7
	Middle	449	14
	Rich	1,165	36.3
Residence	Urban	766	23.9
	Rural	2442	76.1

	Educational status	No education	1648	51.4
		Primary	1080	33.7
		Secondary	296	9.2
		Higher	18/	57
	Poligion	Orthodox	020	20
	Kenglon	Cathalia	929	29
		Catholic	10	0.0
		Protestant	588	18.3
		Muslim	1633	50.9
		Traditional	32	1
		Other	8	0.2
	Region	Tigray	261	8.1
	8	Afar	371	11.6
		Δmhara	294	9.2
		Oromia	308	12 /
		Somali	371	12.4
			321	10
		Benishangul Gumuz	289	9
		SNNPR	360	11.2
		Gambela	247	7.7
		Hararı	251	7.8
		Addis Ababa	180	5.6
		Diredawa	236	7.4
	Age	15-24 years	931	29
		25-34 years	1,719	53.6
		\geq 35 years	558	17.4
	ANC visit	Yes	892	27.8
		No	2316	72.2
	Place of delivery	Home	1447	45.1
		Health facility	1761	54.9
	Media exposure	Yes	1561	48.6
	-	No	1647	51.4
	Delivery by cesarean	No	3001	93.5
	section	Yes	207	6.5
	Currently breast feed	Yes	2376	74.1
		No	832	25.9
	Current pregnant	Yes	316	99
	e viir eine pregnane	No	2892	90.1
177				
178	Prevalence of zero dos	e children in Ethiopia		
179	The prevalence of zero of	lose children among chi	ldren aged 12-35 months	s old was 16.3% (95%CI,
180	15%–17.6%) (Fig-1).			

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Page 11 of 19

BMJ Open

181	Fig.1. Prevalence of zero dose children in Ethionia using mini-EDHS 2019
101	rig-1. 1 revalence of zero dose enharen in Ethiopia using mini-EDIIS 2017.

Factors associated with zero dose children

In the multivariable multilevel binary logistic regression analysis, wealth index, educational status, place of delivery, residence, media exposure, and ANC visit were the significant factors for zero-dose children in Ethiopia at a p-value of less than 0.05. Women with no ANC follow-up was 1.55 (AOR = 1.55, 95% CI: 1.02-2.35, p-value of < 0.001) times higher odds of zero does child than who had an ANC visit. Women with no education were 1.47 (AOR =1.47, 95% CI: 1.11–1.95, p-value of 0.0067) times higher odds of zero dose child than those who had secondary and above educational levels. Women who gave birth at home were 1.39 (AOR =1.39, 95% CI: 1.04–1.86, p-value of < 0.001) times higher odds of zero dose child than women who gave birth at the health facility. Women who had a poor wealth index were also 2.15 times (AOR = 2.15, 95% CI: 1.62– 2.85, p-value of 0.0078) higher odds of zero-dose child than rich women. Also, women from a low proportion of community media exposure were 1.39 (AOR =1.39, 95% CI: 1.13–1.71, p-value of<0.001) times higher odds of a zero-dose child than women from a high proportion of community media exposure. Furthermore, the women from the rural residence were 2.29 (AOR =2.29, 95% CI: 1.53-3.42, p-value of 0.004) times higher odds of zero-dose child than those among urban women (Table-3).

Table: 3 individual and community level maternal factors of zero dose children in Ethiopia using mini-EDHS-2019

Null	Model I	Model II	Model III(mixed)	p-value
model				
	AOR	AOR	AOR	
	(95%CI)	(95%CI)	(95%CI)	
	1.51(0.99, 2.29)		1.55 (1.02, 2.35)*	< 0.001
	Reference		Reference	
	Null model	Null Model I model - AOR (95%CI) 1.51(0.99, 2.29) Reference	Null model Model I Model II Model - - AOR AOR (95%CI) 1.51(0.99, 2.29) Reference -	Null model Model I // Model II Model III(mixed) AOR AOR AOR (95%CI) (95%CI) (95%CI) 1.51(0.99, 2.29) 1.55 (1.02, 2.35)* Reference Reference

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Residence Rural		3 78(2 59	2 29 (1 53 3 42)*	0.004
Urban		5.53) Reference	Reference	0.004
Place of delivery				
Home	1.4(1.05, 1.88)		1.39 (1.04, 1.86)*	< 0.001
Health facility	Reference		Reference	
Community media				
exposure		1.34(1.13,	1.39 (1.13, 1.71)*	< 0.001
Low proportion of media		1.62)	Reference	
exposure		Reference		
High proportion of media				
exposure				
Wealth index				
Poor	2.99 (2.31, 3.87)		2.15 (1.62, 2.85)*	0.0078
Middle	1.3 (1.37, 2.48)		1.42 (0.94, 1.94)	
Rich				
	Reference		Reference	
Current breast feeding				
No	1.07(0.68, 2.12)		1.01(0.74, 1.29)	0.21
Yes	Reference		Reference	
Educational status				
No education	1.27(0.97, 1.64)		1.47(1.11, 1.95)*	0.0067
Primary education	0.88(0.69, 1.12)		0.95(0.75, 1.21)	
Secondary and above	Reference	•	Reference	
Current pregnancy				
No	1.59 (1.01,2.51)		1.9 (0.84, 2.49)	0.34
Yes	Reference	4	Reference	
			1	1

Discussion

The prevalence of zero dose children among children aged 12-35 months old was 16.3%. Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and women from low proportions of community media exposure were the risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose children. Thus, the prevalence of zero dose children among children aged 12-35 months old was 16.3% (95% CI, 15%-17.6%). This finding was in line with a study conducted in Sub-Saharan Africa (16.5%) [1]. But it was lower than a study conducted in

Togo (26.88%) [33] and the WHO/UNICEF Estimates of National Immunization Coverage 2021 report, which estimated that 30% of surviving infants in Ethiopia were zero-dose children [34]. This might be because in the previous study, the vaccination card was considered to declare the vaccination status of the child, but the mother's report was not considered. This may overestimate the previous finding. The current finding was also lower than a study conducted in Cameroon (91.7%) [35]. The possible reason for the discrepancy might be that the study done in Cameroon was conducted in an area where access to health services is very low (the remote rural districts, the homeless population, and immigrants). This segment of the population is suffering from a lack of basic health services, including immunization. This causes a higher prevalence of zero dose children among children. In Ethiopia between 2000 and 2019, the basic vaccination coverage had progressed from 14.3% to 44.1%. The vaccination coverage was estimated to reach 53.6% by 2025; the reduction in zero dose child implies a significant improvement in vaccination coverage [36].

222 [36].

Regarding the factors associated with a zero-dose child, it was found that the odds of a zero-dose vaccine were higher among women who delivered at home than those who delivered at a health facility. This finding was supported by a study conducted in Cameroon [35], a study conducted in sub-Saharan Africa [1] and Ethiopia [37]. This can be explained by the fact that women who give birth at home miss childhood vaccines, including birth doses, and they may not get counselling on childhood vaccines, such as the advantages of vaccination, schedules of vaccine doses, and other related information. Moreover, home delivery may have a negative effect on the subsequent health-seeking behavior of women

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

The odds of a zero-dose child among poor wealth index women were more likely than those among rich wealth index women. This was supported by a study conducted in low- and middle-income countries [38]. This may be justified by the fact that women with low socioeconomic status have a lower acceptability of health-related messages and a lower understanding of the vaccination advantage [39]. Also, women who had no ANC follow-up were more likely to not vaccinate their child at all than women who had ANC follow-up. This finding is supported by a study conducted in India [40] and a study conducted among 82 low- and middle-income countries [41]. This might be associated with the fact that women who do not attend ANC could not get counselling and education services about the advantages and the time schedule of all basic vaccine doses. Alternatively, women who do not attend the ANC service are more likely to not attend health services after birth as well.

Additionally, the odds of zero-dose children among women who were from low proportions of community media exposure were higher than those among women who were from high proportions of community media exposure. This finding was supported by a study conducted in Indonesia [42]. The possible justification for this association may be due to a lack of media access in the community, which could negatively affect knowledge about the advantages and schedule of the childhood vaccine. Alternatively, women who are from low-community media exposure may miss key information released through media outlets. In return, they are more prone to not vaccinating all doses of vaccine for their children. Additionally, mass media exposure, such as through television, radio, newspapers, and the internet, in the community plays an important role in changing the community's attitude, opinion, awareness, and health service-seeking behavior. But women with a low proportion of community media exposure may lack these advantages. In addition, women who had no education also had higher odds of not vaccinating all doses of

Page 15 of 19

BMJ Open

vaccines for their child than women who had secondary or higher educational levels. A previous study conducted in Nigeria also reported that as educational levels increased, the zero-dose vaccine status decreased [43]. This may be because educational status is highly correlated with the knowledge and acceptance rate of vaccination [44]. Additionally, low educational status could be a barrier to accessing health services, including childhood vaccination. Furthermore, this study revealed that women who were from rural areas were more likely to not vaccinate their children at all than urban women. The access to health services is quite different between urban and rural [45]. This is due to the barriers to accessing preventive services in the rural areas, for example, lack of transportation, the far distance of health institutions, and the lack of adequate health professionals in rural areas who deliver the service [46, 47]. Even though this study has lacks some clinically important variables because of secondary data analysis, it has several implications by providing an important tool for designing strategies and policies to reduce the number of zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose child.

268 Conclusion

As compared to the previous studies, the prevalence of zero dose children was low in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and women from low proportions of community media exposure were the risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose child.

274 Ethical declaration

275 Ethical approval

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool .

Page 16 of 19

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
27
20
39
40
41
42
43
44
45
46
47
-17 10
40
49
50
51
52
53
54
55
56
50
5/
58
59
60

276	Since it was a secondary data analysis of EDHS, informed consent from the participants was not
277	applicable. Rather, data requests and approval for access were obtained from DHS International.
278	All data were fully anonymized before we accessed informed consent from DHS international.
279	Consent for publication
280	Not required.
281	Data availability statement
282	All relevant data is available in the manuscript.
283	Conflict of interest
284	The author declares no conflict of interest
285	Funding
286	No
287	Acknowledgments
288	The authors would like to give thanks to DHS International for accessing the data.
289	Author Contributions
290	Conceptualization: Muluken Chanie Agimas
291	Formal analysis: Muluken Chanie Agimas, Meron Asmamaw Alemayewhu, Tigabu Kidie Tesfie,
292	Werkneh Melkie Tilahun
293	Investigation: Muluken Chanie Agimas and Meron Asmamaw Alemayewhu
294	Methodology: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
295	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
296	Software: Muluken Chanie Agimas, Werkneh Melkie Tilahun, Worku Necho Asferie, Mekuriaw
297	Nibret Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
298	Supervision: Muluken Chanie Agimas, Anteneh Kassa yalew
	15
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3 4	299	Validation: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
5 6 7	300	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
7 8 9	301	Visualization: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
10 11	302	Tadesse Abebe, Anteneh Kassa yalew
12 13	303	Writing – review & editing: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret
14 15 16	304	Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Meron Asmamaw Alemayewhu, Tigabu
17 18	305	Kidie Tesfie
19 20	306	Muluken chanie Agimas (MCA) is guarantor of this article.
21 22 23	307	Abbreviation and acronym
24 25	308	AICAkaike information criteria
26 27	309	ANCAntenatal Care
28 29 30	310	DHSDemographic Health Survey
31 32	311	EAsEnumeration Areas
33 34 25	312	EDHSEthiopian Demographic Health Survey
36 37	313	LLRLog Likelihood Ratio
38 39	314	SNNPRSouth Nation and Nationality of People Representative
40 41 42	315	VPDsVaccine Preventable Diseases
43 44 45	316	Reference
46	317	1. Ozigbu, C.E., et al., Correlates of Zero-Dose Vaccination Status among Children Aged 12–59
47	318	Months in Sub-Saharan Africa: A Multilevel Analysis of Individual and Contextual Factors. 2022.
48	319	10 (7): p. 1052.
49	320	2. Antai, D.J.B.i.d., Inequitable childhood immunization uptake in Nigeria: a multilevel analysis of
50 51	321	individual and contextual determinants. 2009. 9 : p. 1-10.
51	322	3. Wivsonge, C.S., et al., Individual and contextual factors associated with low childhood
52 52	323	immunisation coverage in sub-Saharan Africa: a multilevel analysis. 2012. 7 (5): p. e37905.
55 54	324	4 Bobo ET, et al. Child vaccination in sub-Saharan Africa: Increasing coverage addresses
55	325	inequalities. 2022. 40 (1): p. 141-150.
56	525	mequancies. 2022. 40(1). p. 141 150.
57		
58		16
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2			
3	326	5.	Fokoun, C.J.H.V. and Immunotherapeutics, Strategies implemented to address vaccine hesitancy
4	327		<i>in France: a review article.</i> 2018. 14 (7): p. 1580-1590.
5	328	6.	Nathanson, N. and O.M.J.A.j.o.e. Kew, From emergence to eradication: the epidemiology of
7	329		poliomyelitis deconstructed. 2010. 172 (11): p. 1213-1229.
8	330	7.	Kretsinger, K., et al., Polio eradication in the World Health Organization African Region, 2008-
9	331		<i>2012.</i> 2014. 210 (suppl_1): p. S23-S39.
10	332	8.	Waziri, N.E., et al., Polio eradication in Nigeria and the role of the National Stop Transmission of
11	333		<i>Polio program, 2012–2013.</i> 2014. 210 (suppl_1): p. S111-S117.
12	334	9.	Brownwright, T.K., Z.M. Dodson, and W.G.J.B.p.h. van Panhuis, Spatial clustering of measles
13	335		vaccination coverage among children in sub-Saharan Africa. 2017. 17 (1): p. 1-7.
14	336	10.	Wobudeya, E., et al., Epidemiology of tuberculosis in children in Kampala district, Uganda, 2009–
16	337		2010; a retrospective cross-sectional study. 2015. 15 : p. 1-8.
17	338	11.	Mihigo, R., et al., Routine immunization in the WHO African region: progress, challenges and way
18	339		<i>forward</i> . 2015. 19 (2): p. 2-7.
19	340	12.	Organization, W.H., WHO UNICEF coverage estimates WHO World Health Organization:
20	341		Immunization, Vaccines and Biologicals. Vaccine preventable diseases Vaccines monitoring system
21	342		2019 Global Summary Reference Time Series: DTP3.[Cited 2020 Feb 12]. 2012.
22	343	13.	Rachlin, A., et al., <i>Routine vaccination coverage—worldwide, 2021</i> . 2022. 71 (44): p. 1396.
23	344	14.	Jheeta, M. and J.J.B.o.t.W.H.O. Newell, Childhood vaccination in Africa and Asia: the effects of
24 25	345		parents' knowledge and attitudes. 2008, SciELO Public Health. p. 419-419A.
25	346	15.	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC), progress and challenges
27	347		with Achieving Universal Immunization Coverage, URL:
28	348		https://www.who.int/publications/m/item/progress-and-challenges
29			
30	349	2022.	
31	350	16.	Chido-Amajuoyi, O.G., et al., Prevalence and correlates of never vaccinated Nigerian children, aged
32	351	47	1-5 years. 2018. 36 (46): p. 6953-6960.
33 24	352	17.	Cata-Preta, B.O., et al., Zero-dose children and the immunisation cascade: understanding
35	353	40	immunisation pathways in low and middle-income countries. 2021. 39 (32): p. 4564-4570.
36	354	18.	Arambepola, R., et al., Using geospatial models to map zero-dose children: Factors associated with
37	355		zero-dose vaccination status before and after a mass measles and rubella vaccination campaign
38	356		in Southern province, Zambia. 2021. 6(12): p. e007479.
39	357	19.	Galles, N.C., et al., Measuring routine childhood vaccination coverage in 204 countries and
40	358		territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release
41	359		<i>1</i> . 2021. 398 (10299): p. 503-521.
42	360	20.	Murhekar, M.V. and M.S.J.T.L.G.H. Kumar, Reaching zero-dose children in India: Progress and
43	361		<i>challenges ahead.</i> 2021. 9 (12): p. e1630-e1631.
44 45	362	21.	Johri, M., S. Rajpal, and S.J.T.L.G.H. Subramanian, Progress in reaching unvaccinated (zero-dose)
46	363		children in India, 1992–2016: a multilevel, geospatial analysis of repeated cross-sectional surveys.
47	364		2021. 9 (12): p. e1697-e1706.
48	365	22.	VanderEnde, K., et al., <i>Global routine vaccination coverage—2017.</i> 2018. 67 (45): p. 1261.
49	366	23.	García-Moreno, C., et al., Global and regional estimates of violence against women: prevalence
50	367		and health effects of intimate partner violence and non-partner sexual violence. 2013: World
51	368		Health Organization.
52	369	24.	Nour, T.Y., et al., Predictors of immunization coverage among 12–23 month old children in
53	370		Ethiopia: systematic review and meta-analysis. 2020. 20 (1): p. 1-19.
54 57	371	25.	Alfaro-Murillo, J.A., et al., The case for replacing live oral polio vaccine with inactivated vaccine in
22 56	372		<i>the Americas.</i> 2020. 395 (10230): p. 1163-1166.
50			
58			17
59			1/

59

60

BMJ Open

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Erasmushogeschool .	J Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA
--	---------------------	--

ω

1			
2			
3	373	26.	Kanté, A.M., et al., Factors associated with compliance with the recommended frequency of
4	374		postnatal care services in three rural districts of Tanzania. 2015. 15 : p. 1-10.
5	375	27.	Azie, J.I., et al., <i>Reaching zero-dose children</i> . 2024. 8 (85): p. 85.
7	376	28.	Fetene, S.M., T.J.B.P. Gebremedhin, and Childbirth, Uptake of postnatal care and its determinants
, 8	377		in Ethiopia: a positive deviance approach. 2022. 22 (1): p. 601.
9	378	29.	Indicators, K.J.E. and ICF, Mini demographic and health survey. 2019.
10	379	30.	H., A., A new look at the statistical model identification. IEEE transactions on automatic control.
11	380		:19(6):716-23, 1974 Dec.
12	381	31	H. G. Multilevel statistical models. John Wiley & Sons: 2011 Jul 8
13	382	32	Merlo I et al A brief concentual tutorial of multilevel analysis in social enidemiology: using
14	202	52.	merce, s., et al., A brief conceptual tational of mathever analysis in social epidemiology. Using
15	202		$\mathbf{co}(A) = 200, 207$
16	204 205	22	Wanghassim N.T. et al. Dravalance and factors associated with "zero dece" in children 12 to 22
17	385	33.	Mangbassim, N. I., et al., <i>Prevalence and Jactors associated with Zero-dose. In children 12 to 23</i>
18	380	24	months in Togo. 2023. 9: p. 12.
19	387	34.	WHO/UNICEF. national immunization estimate. 2021.
20	388	35.	Nchinjoh, S.C., et al., Factors Associated with Zero-Dose Childhood Vaccination Status in a Remote
21	389		Fishing Community in Cameroon: A Cross-Sectional Analytical Study. 2022. 10 (12): p. 2052.
22	390	36.	Berhanel, Y., A. Bekele, and F.J.E.M.J. Tesfaye,, Immunization (EPI) in Ethiopia: acceptance,
23	391		coverage, and sustainability. 2000. 38: p. 1-60.
25	392	37.	Moyer, C.A., et al., The relationship between facility delivery and infant immunization in Ethiopia.
26	393		2013. 123 (3): p. 217-220.
27	394	38.	Hajizadeh, M.J.J.E.C.H., Socioeconomic inequalities in child vaccination in low/middle-income
28	395		countries: what accounts for the differences? 2018.
29	396	39.	Glewwe, P.J.J.o.h.r., Why does mother's schooling raise child health in developing countries?
30	397		Evidence from Morocco. 1999: p. 124-159.
31	398	40.	Krishnamoorthy, Y. and T.J.F.P. Rehman, Impact of antenatal care visits on childhood
32	399		immunization: a propensity score-matched analysis using nationally representative survey. 2022.
33	400		39 (4): p. 603-609.
34 25	401	41.	Farrenkopf, B.A., et al., Understanding household-level risk factors for zero dose immunization in
35 26	402		82 low-and middle-income countries. 2023. 18 (12): p. e0287459.
30	403	42.	Machmud, P.B., et al., Mother's Media Use and Children's Vaccination Status in Indonesia: A
38	404		Community-Based Cross-Sectional Study 2022 9 : p 2333794X221092740
39	405	43	Sato BIV Geospatial and Time Trend of Prevalence and Characteristics of Zero-Dose Children in
40	405	45.	Nigeria from 2003 to 2018, 2022, 10 (0): p. 1556
41	400	11	Forshaw 1 et al. The global effect of maternal education on complete childhood vaccingtion: a
42	102		systematic review and meta-analysis 2017 17 (1): p. 1-16
43	400	15	Douthit N at al. Expering come important barriers to health care access in the rural USA 2015
44	409	45.	120 (G), p. 611, 620
45	410	40	129(0): P. 011-020.
46	411	46.	Grant, R., et al., Transportation barriers to child health care access remain after health reform.
47	412		2014. 168 (4): p. 385-386.
48	413	47.	Weigel, P.A., et al., Variation in primary care service patterns by rural-urban location. 2016. 32 (2):
49 50	414		p. 196-203.
50	<u>/1</u>		
52	415		
53			
54			
55			

Fig-1: Prevalence of zero dose children in Ethiopia using EDHS 2019.

Individual and community level maternal factors for zero dose children in Ethiopia using EDHS 2019: A mixed effect model

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085235.R3
Article Type:	Original research
Date Submitted by the Author:	12-Nov-2024
Complete List of Authors:	Agimas, Muluken Chanie; University of Gondar College of Medicine and Health Sciences, epidemiology; University of Gondar College of Medicine and Health Sciences, epidemiology Alemayehu, Meron Asmamaw; University of Gondar, Epidemiology Tesfie, Tigabu Kidie; University of Gondar, Department of Epidemiology and Biostatistics Tilahun, Werkneh Melkie ; Debre Markos University, Department of Public Health Asferie, Worku; Debre Tabor University, Departments of pediatric and neonatal Nursing Aweke, Mekuriaw Nibret; University of Gondar, Department of Nutrition ABEBE, MOGES; Debark University, Department of Nursing Yalew, Anteneh; Wolkite University, Department of Public health
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Evidence based practice, Global health, Health services research
Keywords:	IMMUNOLOGY, Immunity, Medicine, Epidemiology < INFECTIOUS DISEASES, Hospitals, Public

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

> Individual and community level maternal factors for zero dose children in Ethiopia using mini-EDHS 2019: A mixed effect model Muluken Chanie Agimas¹, Meron Asmamaw Alemayehu¹, Tigabu Kidie Tesfie¹, Werkneh Melkie Tilahun², Worku Necho Asferie⁴, Mekuriaw Nibret Aweke⁶, Moges Tadesse Abebe³, Anteneh Kassa yalew⁵ ¹Department of Epidemiology and Biostatistics, institute of public health, college of medicine and health science, university of Gondar, Gondar, Ethiopia. ²Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia. ³Department of Nursing, College of Health Science, Debark University, Debark, Ethiopia. ⁴Departments of pediatric and neonatal Nursing, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia ⁵Department of Public health, college of medicine and Health science, Wolkite University, Wolkite, Ethiopia. ⁶Department of Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Ethiopia Authors address: 1. Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com 2. Meron Asmamaw Alemayehu (MAA): merryalem101@gmail.com 3. Tigabu Kidie Tesfie (TKT): tigabukidie@gmail.com 4. Werkneh Melkie Tilahun (WMT): werkneh7wmt@gmail.com 5. Worku Necho Asferie (WNA): workunecho@gmail.com 6. Mekuriaw Nibret Aweke (MNA): mekunib@gmail.com 7. Moges Tadesse Abebe (MTA): moges7045@gmail.com 8. Anteneh Kassa yalew (AKY): antenehkassa28@gmail.com **Corresponding author:** Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

1 2

BMJ Open

3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
18
10
20
20 21
21
22
23
24
25
26
27
28
29
30
21
22
32
33
34
35
36
37
38
39
40
41
<u>4</u> 2
42
45
44
45
46
47
48
49
50
51
52
52
55
54 FF
22
56
57
58
59
60

Introduction: Zero-dose children refer to a child who has not yet received any childhood vaccines. 29 Globally, zero-dose children are the major public health problem. In sub-Saharan African 30 countries, among five children, one did not access the vaccines. But the efforts to identify the 31 factors contributing to the zero-dose child are not well addressed in Ethiopia. 32 33 **Objectives**: To assess individual and community-level maternal factors of zero-dose children in Ethiopia using mini-EDHS 2019. 34 Methods: A secondary analysis of a cross-sectional study was used among a total of 3208 35 participants. The STATA-14 was used for descriptive and multilevel binary logistic regression 36 (mixed effect model) analysis. Model selection was conducted using AIC. To identify significant 37

factors for zero-dose children, a p-value of < 0.05 with 95% confidence was used.

Results: The prevalence of zero-dose children among children aged 12-35 months old was 523 (16.3%, 95%CI, 15%–17.6%). Women with no antenatal care follow-up (Adjusted odds ratio = 1.55, 95% CI: 1.02–2.35), none educated women (Adjusted odds ratio = 1.47, 95% CI: 1.11–1.95), women who gave birth at home (Adjusted odds ratio = 1.39, 95% CI: 1.04–1.86), women who had poor wealth index (Adjusted odds ratio = 2.15, 95% CI: 1.62–2.85), and women from low proportions of community media exposure (Adjusted odds ratio = 1.39, 95% CI: 1.13–1.71) were the risk factors for zero-dose children in Ethiopia.

46 Conclusion: As compared to the previous studies, the prevalence of zero-dose children was low
47 in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth index, no
48 ANC visit, and women from low proportions of community media exposure were the risk factors

Page 4 of 20

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

49 for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access

50 for women is highly recommended to reduce zero-dose child mortality.

51 Key words: zero-dose vaccination, maternal factors, Ethiopian Demographic Health Survey,
52 Ethiopia

53 Strength and limitation of the study

- Using nationally representative sample increases the power of the study.
- Additionally, proportional allocation of sample for each cluster and weighting the sample makes the study nationally representative.
 - But because we used secondary data and a cross-sectional study design, our study shared the limitations of the secondary data and the cross-sectional study.
 - Recall bias was also the limitation of the study.

60 Introduction

A zero-dose vaccine child is defined as a child who does not uptake any types of vaccines [1].
Globally, the uptake of childhood vaccines prevents 2.5 million child deaths each year [2, 3]. Onefifth of sub-Saharan African children never get the vaccines [4]. Childhood vaccination is the most
cost-effective strategy for vaccine-preventable diseases like poliomyelitis, measles, pneumonia,
hepatitis B virus, diphtheria, Haemophilus influenza type B (Hib), tuberculosis, diarrhea, and
others [5, 6]. Zero-dose children are more at risk for vaccine-preventable disease [7-10].

In Africa, due to non-uptake of basic vaccines, 30 million under-five children are attacked by vaccine-preventable diseases, and 500,000 of them die each year [11]. In 2020, about 17 million under-five children in low and middle-income countries were not take any vaccines [12]. Which means the majority of zero-dose children are from low and middle-income countries, especially in African
Page 5 of 20

BMJ Open

and Southeast Asian regions [13]. The proportion of zero-dose vaccines is a good indicator of the failure to achieve the national vaccination coverage goal in sub-Saharan Africa (90%) [14]. But the COVID-19 pandemic was a threat to the immunization program, which increased the number of zero-dose children by 37% [15]. Conducting research on zero-dose vaccines is very important for evidence-based strategies, interventions, and achieving the WHO goal [16]. Additionally, searching for evidence on the burden and factors of the zero-dose vaccine is crucial for childhood disability reduction [17-19]. Among factors affecting not taking any vaccine dose are lack of attention for the zero-dose population, rural residence, and low educational status [20-22]. Ethiopia is the fourth-leading contributor to global zero-dose children, despite considerable progress in the total number of infants being immunized [23]. As previous evidence showed, the distribution of vaccination among children in Ethiopia varied across the regions, and thus the lowest proportion (21%) of vaccinated children was reported in the Somali and Afar regions, and the highest proportion (89%) of immunized children was reported in the Amhara region [24]. Even though zero-dose children in Ethiopia are a public health concern, the efforts to identify the factors contributing to the zero-dose children and its prevalence are not well addressed. Therefore, studies are needed to assess the prevalence and determinants of zero-dose children in Ethiopia. Therefore, this study aimed to

determine the prevalence and identify individual and community-level factors for zero-dose
children in Ethiopia using the EDHS 2019 mixed effect model.

Objectives

91 To determine the prevalence of zero dose children in Ethiopia using mini-EDHS 2019

92 To identify factors for zero dose children in Ethiopia using mini-EDHS 2019

93 Methods

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA

rasmushogescl

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Study design, area and period

The EDHS-2019 data was collected from March 21 to June 28, 2019, using a cross-sectional study design. Ethiopia is a low-income country located in the Horn of Africa, and its capital city is Addis Ababa. In Ethiopia, Dallol (128 meters above sea level) and Ras Dashen (4620 meters above sea level) are the lowest and highest latitudes above sea level, respectively [25]. Ethiopia has twelve administrative regions, namely Afar, Somalia, Harari, Amhara, Oromia, Gambela, South Ethiopia, Central Ethiopia, Tigray, Benishangul Gumuz, Sidama, and southwest Ethiopia. Addis Ababa and Dire Dawa are the two self-governed cities in Ethiopia. According to the December 27, 2023, worldometer estimate, Ethiopia has a total population of 128,073,400, and the rural population comprises about 77.9% of the total population [26]. **Population** The source population was all women who had children prior to the survey, and women who had children aged 12-35 months in the enumeration area were included in the study. Variables **Dependent variable:** Zero dose children status (Yes, No) **Independent variables:** wealth index, residence, educational status, place of delivery, cesarean delivery, religion, age of the women, ANC visit, media exposure, region, current breast feeding, current pregnancy **Clustering variable:** EDHS cluster (V001) **Operational definition Zero dose children:** are those that have not received any routine vaccine (yes for zero dose children), otherwise classified as non-zero-dose vaccines (no) [27]. Similarly, the mini-EDHS

2019 classify children as zero dose children if not received any routine vaccine and otherwiseclassified as not zero dose children.

Media exposure: was assessed based on whether people had access to read newsletters, listen to
the radio, and watch TV. Accordingly, if they have access to all three media (newsletter, radio,
and TV) at least once a week, we categorized them as "yes", otherwise "no"[28].

Sampling method and procedure

The mini-EDHS 2019 sample was stratified and selected in two stages. Each region was stratified by urban and rural areas, with a total of 21 sampling strata. A total of 305 EAs, 93 EAs in urban areas, and 212 EAs in rural areas, were selected using proportional EA size allocation techniques. In the selected EAs, household listings were conducted. Then 30 households were selected per cluster using equal-probability systematic selection techniques. Finally, a multistage sampling method was used to select 3208 participants who had children aged 12-35 months in the selected EAs. The detailed section is reported in the mini EDHS 2019 report [29].

³ 130 Data source, collection and quality assurance

We used the secondary analysis of the mini-EDHS 2019 data set. This data was collected using a pretested structured interview technique from March 21 to June 28, 2019. The location of the data was also collected using a geographic positioning system (2 kilometers for urban clusters and 5 kilometers for rural clusters). To assure the quality of the data, pretesting and training for data collectors and supervisors were conducted. The detail section on data source, collection, and quality assurance has been reported in mini EDHS 2019 [29]. For the purpose of further analysis for the current study, data was requested online from the demographic health survey international at DHS's official website, http://www.dhsprogram.com. Then the data was accessed after 2

working days. After the data was accessed, variable selection, data cleaning, weighting the sample,

recoding, and overall data management were conducted. Data processing and statistical analysis

After accessing the data from DHS International, cleaning, recoding, sampling weight, and missing data checking were conducted using STATA software version 14 and there was no missing data. Descriptive data was displayed by bar graph table and frequency. The "Svy" command was used as the sampling weight of cluster sampling. After this, multilevel (mixed-effect) binary logistic regression was used to identify the determinants for zero-dose children. The reason we used such a model was because of the hierarchical nature of the EDHS data and the possibility of considering a natural nesting of data. We built models like the null model (a model with an intercept/no predictors), model I (level one predictors), model II (a model with level two predictors), and model III (mixed effect model). The mixed effect model is:

Let y_{ij} denote the binary outcome for an individual *i* in neighborhood *j*, and assume y_{ij} follows a Bernoulli distribution with success probability p_{ii} or Binomial $(1, p_{ii})$. Using an appropriate link function such as logit, a binary outcome can be associated with linear predictors as the following, $logit[E(y_{ij})] = logit(p_{ij}) = \alpha_0 + X_{ij}\beta + Z_j\gamma + u_j$ [30].

Where $\alpha 0$ is the regular intercept, Xij β is the product of individual-level predictors and the corresponding unknown parameters, and Zjy is the product of neighborhood-level predictors and the associated parameters. Within-neighborhood correlation is captured by uj which is usually assumed to be a normally distributed random intercept with mean 0 and variance $\sigma 2u$ [31].

To test the clustering effect, the intra-class correlation coefficient was used with a cutoff of >0.05. (>5%). For each model, Intraclass correlation (ICC (ρ) = $\sigma^2 \epsilon/(\sigma^2 \epsilon + \sigma^2 \mu)$; $\sigma^2 \mu = \pi^2/3[32]$ was calculated. The clustering variable to show the clustering effect of zero-dose children was the

3 4	162	EDHS cluster (V001). The proportional change in variance (PCV=variance of the null model
5 6	163	minus variance of the next model/variance in the null model*100), MOR=exp $\sqrt{2}$ x VA x 0.6745
7 8 0	164	= exp (0.95xVA) [32] and Akaike information criteria (AIC = 2k-2lnL, where k is the number of
9 10 11	165	parameters and L is the maximum value of the likelihood function of the model) were also
12 13	166	calculated. Then the best model was selected based on the lowest AIC value (Table 1). The
14 15	167	significant variables were selected using the p-value less than 0.05 at 95%CL.

Table 1: A model comparison for zero dose children in Ethiopia using mini-EDHS 2019.

) 165	parameters	and L is the maximum value of the	e likelihood funct	tion of the mode	el) were also		
2 166	calculated. Then the best model was selected based on the lowest AIC value (Table 1). The						
167	significant	variables were selected using the p-val	ue less than 0.05	at 95%CL.			
168	Table 1: A	a model comparison for zero dose chi	ldren in Ethiopia	a using mini-EDI	HS 2019.		
Random	effect	Null model	Model I	Model II	Model III		
Variance	3	0.27	0.199	0.21	0.118		
ICC		38%	19%	31%	7.8%		
PCV (%)	Reference	26.3%	22.2%	56.3%		
MOR		19.8	1.93	3.56	1.67		
Log like	lihood	-1950	-1904	-1920	-1889		
AIC		3905	3826	3848	3801		
170 171 172	Results Characte	ristics of the participants	1648 (51.4%) h	ad no education	About 1447		
173	(45.1%) and 2316 (72.2%) of them gave birth at home and had no ANC visit, respectively.				respectively.		
174	Furthermo	re, 1594 (49.7%) and 2442 (76.1%) of	the participants ha	ad poor wealth ind	dex and were		
175	from rural residence, respectively (Table-2).						
176	Table-2: c	haracteristics of the participants amo	ong women who	had child aged 1	2-35 months		
177	old in Eth	iopia using mini-EDHS 2019.					
	Variable	Category	Weighted frequer	ncy %			

- **Characteristics of the participants**
- Among a total of 3028 participants, about half, 1648 (51.4%), had no education. About 1447
 - (45.1%) and 2316 (72.2%) of them gave birth at home and had no ANC visit, respectively.
- Furthermore, 1594 (49.7%) and 2442 (76.1%) of the participants had poor wealth index and were
- from rural residence, respectively (Table-2).

Table-2: characteristics of the participants among women who had child aged 12-35 months

Variable	Category	Weighted frequency	%
Wealth index	Poor	1594	49.7
	Middle	449	14
	Rich	1,165	36.3
Residence	Urban	766	23.9
	Rural	2442	76.1

2					
3		Educational status	No education	1648	51.4
4			Primary	1080	33.7
5			Secondary	296	9.2
6 7			Secondary	290	<i></i>
/ 0			Higher	184	5.7
0 0		Religion	Orthodox	929	29
9 10			Catholic	18	0.6
11			Protestant	588	18.3
12			Muslim	1633	50.9
13			Traditional	37	1
14				52	1
15			Other	8	0.2
16		Region	Tigray	261	8.1
17			Afar	371	11.6
18			Amhara	294	9.2
19			Oromia	398	12.4
20 21			Somali	321	10
22			Bonishangul Gumuz	280	0
23			SNINDD	269	<i>)</i> 11)
24			SINNPR	300 247	11.2
25			Gambela	247	/./
26			Harari	251	1.8
27			Addis Ababa	180	5.6
28			Diredawa	236	7.4
29		Age	15-24 years	931	29
30 21		-	25-34 years	1,719	53.6
21 22			\geq 35 years	558	17.4
33		ANC visit	Yes	892	27.8
34			No	2316	72.2
35		Place of delivery	Home	1447	45.1
36			Health facility	1761	54.9
37		Madia avnosura	Ves	1561	18 6
38		Wedia exposure	I CS	1501	48.0 51 <i>A</i>
39		Delivery by eccercor	No	2001	02.5
40		Delivery by cesarean	INO	5001	93.3
41 42		section	Yes	207	6.5
42 13		Currently breast feed	Yes	2376	74.1
44		-	No	832	25.9
45		Current pregnant	Yes	316	9.9
46		1 2	No	2892	90.1
47	178				
48	1,0				
49	179	Prevalence of zero dos	e children in Ethionia		
50	115		e emili en mitemopla		
51	100	The prevalence of zero	losa childran among chil	Idran agad 12 25 months	old was 16 20/ (050/ CI
52 53	190	The prevalence of zero (uose ennuren annong enn	iuren ageu 12-35 monuis	o ulu was 10.370 (9370Cl,
55 54	101	150/ 17 60/) (Eig 1)			
57	TQT	1570-17.070) (FIG-1) .			

Page 11 of 20

BMJ Open

182	Fig-1. Prevalence	of zero dose	children in	Ethionia	using mi	ni-EDHS 2019
102	rig-1. Trevalence	UI ZUI U UUSU	· chinai chi ili	Eunopia	using mi	m-EDIIS 2017.

Factors associated with zero dose children

In the multivariable multilevel binary logistic regression analysis, wealth index, educational status, place of delivery, residence, media exposure, and ANC visit were the significant factors for zero-dose children in Ethiopia at a p-value of less than 0.05. Women with no ANC follow-up was 1.55 (AOR = 1.55, 95% CI: 1.02-2.35, p-value of < 0.001) times higher odds of zero does child than who had an ANC visit. Women with no education were 1.47 (AOR =1.47, 95% CI: 1.11–1.95, p-value of 0.0067) times higher odds of zero dose child than those who had secondary and above educational levels. Women who gave birth at home were 1.39 (AOR =1.39, 95% CI: 1.04–1.86, p-value of < 0.001) times higher odds of zero dose child than women who gave birth at the health facility. Women who had a poor wealth index were also 2.15 times (AOR = 2.15, 95% CI: 1.62– 2.85, p-value of 0.0078) higher odds of zero-dose child than rich women. Also, women from a low proportion of community media exposure were 1.39 (AOR =1.39, 95% CI: 1.13–1.71, p-value of < 0.001) times higher odds of a zero-dose child than women from a high proportion of community media exposure. Furthermore, the women from the rural residence were 2.29 (AOR =2.29, 95% CI: 1.53-3.42, p-value of 0.004) times higher odds of zero-dose child than those among urban women (Table-3).

Table: 3 individual and community level maternal factors of zero dose children in Ethiopia

using mini-EDHS-2019 N.11 Model I Model II Model III(mixed) n voluo Variables AN

140105	INUIT	WIGGET I	Widdel II		p-value
	model				
C follow-up		AOR	AOR	AOR	
No		(95%CI)	(95%CI)	(95%CI)	
Yes		1.51(0.99, 2.29)		1.55 (1.02, 2.35)*	< 0.001
		Reference		Reference	

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Residence Rural		3 78(2 59	2 29 (1 53 3 42)*	0.004
Urban		5.53) Reference	Reference	0.004
Place of delivery				
Home	1.4(1.05, 1.88)		1.39 (1.04, 1.86)*	< 0.001
Health facility	Reference		Reference	
Community media				
exposure		1.34(1.13,	1.39 (1.13, 1.71)*	< 0.001
Low proportion of media		1.62)	Reference	
exposure		Reference		
High proportion of media				
exposure				
Wealth index				
Poor	2.99 (2.31, 3.87)		2.15 (1.62, 2.85)*	0.0078
Middle	1.3 (1.37, 2.48)		1.42 (0.94, 1.94)	
Rich				
	Reference		Reference	
Current breast feeding				
No	1.07(0.68, 2.12)		1.01(0.74, 1.29)	0.21
Yes	Reference		Reference	
Educational status				
No education	1.27(0.97, 1.64)		1.47(1.11, 1.95)*	0.0067
Primary education	0.88(0.69, 1.12)		0.95(0.75, 1.21)	
Secondary and above	Reference		Reference	
Current pregnancy		5		
No	1.59 (1.01,2.51)		1.9 (0.84, 2.49)	0.34
Yes	Reference	4	Reference	

Discussion

The prevalence of zero dose children among children aged 12-35 months old was 16.3%. Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and women from low proportions of community media exposure were the risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose children. Thus, the prevalence of zero dose children among children aged 12-35 months old was 16.3% (95% CI, 15%-17.6%). This finding was in line with a study conducted in Sub-Saharan Africa (16.5%) [1]. But it was lower than a study conducted in

Togo (26.88%) [33] and the WHO/UNICEF Estimates of National Immunization Coverage 2021 report, which estimated that 30% of surviving infants in Ethiopia were zero-dose children [34]. This might be because in the previous study, the vaccination card was considered to declare the vaccination status of the child, but the mother's report was not considered. This may overestimate the previous finding. The current finding was also lower than a study conducted in Cameroon (91.7%) [35]. The possible reason for the discrepancy might be that the study done in Cameroon was conducted in an area where access to health services is very low (the remote rural districts, the homeless population, and immigrants). This segment of the population is suffering from a lack of basic health services, including immunization. This causes a higher prevalence of zero dose children among children. In Ethiopia between 2000 and 2019, the basic vaccination coverage had progressed from 14.3% to 44.1%. The vaccination coverage was estimated to reach 53.6% by 2025; the reduction in zero dose child implies a significant improvement in vaccination coverage [36].

223 [36].

Regarding the factors associated with a zero-dose child, it was found that the odds of a zero-dose vaccine were higher among women who delivered at home than those who delivered at a health facility. This finding was supported by a study conducted in Cameroon [35], a study conducted in sub-Saharan Africa [1] and Ethiopia [37]. This can be explained by the fact that women who give birth at home miss childhood vaccines, including birth doses, and they may not get counselling on childhood vaccines, such as the advantages of vaccination, schedules of vaccine doses, and other related information. Moreover, home delivery may have a negative effect on the subsequent health-seeking behavior of women

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

The odds of a zero-dose child among poor wealth index women were more likely than those among rich wealth index women. This was supported by a study conducted in low- and middle-income countries [38]. This may be justified by the fact that women with low socioeconomic status have a lower acceptability of health-related messages and a lower understanding of the vaccination advantage [39]. Also, women who had no ANC follow-up were more likely to not vaccinate their child at all than women who had ANC follow-up. This finding is supported by a study conducted in India [40] and a study conducted among 82 low- and middle-income countries [41]. This might be associated with the fact that women who do not attend ANC could not get counselling and education services about the advantages and the time schedule of all basic vaccine doses. Alternatively, women who do not attend the ANC service are more likely to not attend health services after birth as well.

Additionally, the odds of zero-dose children among women who were from low proportions of community media exposure were higher than those among women who were from high proportions of community media exposure. This finding was supported by a study conducted in Indonesia [42]. The possible justification for this association may be due to a lack of media access in the community, which could negatively affect knowledge about the advantages and schedule of the childhood vaccine. Alternatively, women who are from low-community media exposure may miss key information released through media outlets. In return, they are more prone to not vaccinating all doses of vaccine for their children. Additionally, mass media exposure, such as through television, radio, newspapers, and the internet, in the community plays an important role in changing the community's attitude, opinion, awareness, and health service-seeking behavior. But women with a low proportion of community media exposure may lack these advantages. In addition, women who had no education also had higher odds of not vaccinating all doses of

Page 15 of 20

BMJ Open

vaccines for their child than women who had secondary or higher educational levels. A previous study conducted in Nigeria also reported that as educational levels increased, the zero-dose vaccine status decreased [43]. This may be because educational status is highly correlated with the knowledge and acceptance rate of vaccination [44]. Additionally, low educational status could be a barrier to accessing health services, including childhood vaccination. Furthermore, this study revealed that women who were from rural areas were more likely to not vaccinate their children at all than urban women. The access to health services is guite different between urban and rural [45]. This is due to the barriers to accessing preventive services in the rural areas, for example, lack of transportation, the far distance of health institutions, and the lack of adequate health professionals in rural areas who deliver the service [46, 47]. Recall bias (because of the data were collected a self-report of mothers who have child 1-3 years) and unable to show cause-effect relationship were the limitations of the study. Inaccuracy which was different in size and direction in one group than the other (differential error) or the effect was not the same for groups in the study. The other limitation of this study was lacks some clinically important variables because of secondary data analysis. Even though it has such limitations, the study has several implications by providing an important tool for designing strategies and policies to reduce the number of zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose child.

273 Conclusion

As compared to the previous studies, the prevalence of zero dose children was low in Ethiopia.
Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and
women from low proportions of community media exposure were the risk factors for zero-dose

3 4	277	children in Ethiopia. Therefore, expanding maternal health services and media access for women
5 6	278	is highly recommended to reduce zero-dose child.
7 8	279	Ethical declaration
9 10 11	280	Ethical approval
12 13	281	Since it was a secondary data analysis of EDHS, informed consent from the participants was not
14 15	282	applicable. Rather, data requests and approval for access were obtained from DHS International.
16 17 18	283	All data were fully anonymized before we accessed informed consent from DHS international.
19 20	284	Consent for publication
21 22	285	Not required.
23 24 25	286	Data availability statement
23 26 27	287	All relevant data is available in the manuscript.
28 29	288	Conflict of interest
30 31 32	289	The author declares no conflict of interest
32 33 34	290	Funding
35 36	291	No
37 38	292	Acknowledgments
39 40 41	293	The authors would like to give thanks to DHS International for accessing the data.
42 43	294	Author Contributions
44 45	295	Conceptualization: Muluken Chanie Agimas
46 47 48	296	Formal analysis: Muluken Chanie Agimas, Meron Asmamaw Alemayewhu, Tigabu Kidie Tesfie,
49 50	297	Werkneh Melkie Tilahun
51 52	298	Investigation: Muluken Chanie Agimas and Meron Asmamaw Alemayewhu
53 54 55		
56 57		
58		15
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4	299	Methodology: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Mog	ges
5 6	300	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie	
7 8 0	301	Software: Muluken Chanie Agimas, Werkneh Melkie Tilahun, Worku Necho Asferie, Mekuria	aw
9 10 11	302	Nibret Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie	
12 13 14 15 16 17 18	303	Supervision: Muluken Chanie Agimas, Anteneh Kassa yalew	
	304	Validation: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Mog	ges
	305	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie	
19 20	306	Visualization: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Mog	ges
21 22	307	Tadesse Abebe, Anteneh Kassa yalew	
23 24 25	308	Writing – review & editing: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nib	ret
26 27	309	Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Meron Asmamaw Alemayewhu, Tiga	bu
28 29	310	Kidie Tesfie	
30 31 32	311	Muluken chanie Agimas (MCA) is guarantor of this article.	
33 34	312	Abbreviation and acronym	
35 36	313	AICAkaike information criteria	
37 38	314	ANCAntenatal Care	
39 40 41	315	DHSDemographic Health Survey	
42 43	316	EAsEnumeration Areas	
44 45	317	EDHSEthiopian Demographic Health Survey	
40 47 48	318	LLRLog Likelihood Ratio	
49 50	319	SNNPRSouth Nation and Nationality of People Representative	
51 52	320	VPDsVaccine Preventable Diseases	
53 54 55	321	Reference	
56 57			
58 59		For noor review, only, http://hmionen.hmi.com/site/showidalines.vistory	16
60		For peer review only - http://pmjopen.pmj.com/site/about/guidelines.xntml	

1			
2			
3	322	1.	Ozigbu, C.E., et al., Correlates of Zero-Dose Vaccination Status among Children Aged 12–59
4	323		Months in Sub-Saharan Africa: A Multilevel Analysis of Individual and Contextual Factors. 2022.
6	324		10 (7): p. 1052.
7	325	2.	Antai, D.J.B.i.d., Inequitable childhood immunization uptake in Nigeria: a multilevel analysis of
8	326		individual and contextual determinants. 2009. 9 : p. 1-10.
9	327	3.	Wiysonge, C.S., et al., Individual and contextual factors associated with low childhood
10	328		immunisation coverage in sub-Saharan Africa: a multilevel analysis. 2012. 7 (5): p. e37905.
11	329	4.	Bobo, F.T., et al., Child vaccination in sub-Saharan Africa: Increasing coverage addresses
12	330		inequalities. 2022. 40 (1): p. 141-150.
13	331	5.	Fokoun, C.J.H.V. and Immunotherapeutics, <i>Strategies implemented to address vaccine hesitancy</i>
14	332		in France: a review article. 2018. 14 (7): p. 1580-1590.
15	333	6.	Nathanson, N. and O.M.I.A.i.o.e. Kew. From emergence to eradication: the epidemiology of
10	334	•	noliomvelitis deconstructed, 2010, 172 (11): p. 1213-1229
17 10	335	7.	Kretsinger, K., et al., Polio eradication in the World Health Organization African Region, 2008–
10	336		2012 2014 210 (suppl 1): n \$23-\$39
20	337	8	Waziri N.E. et al. Polio eradication in Nigeria and the role of the National Ston Transmission of
21	338	0.	Polio program 2012–2013 2014 210(suppl 1): p S111-S117
22	220	٥	Brownwright TK 7M Dodson and WGLB nh van Panhuis Snatial clustering of measles
23	310	9.	vaccingtion coverage among children in sub-Sabaran Africa, 2017, 17 (1): p. 1-7
24	2/1	10	Wobudova E. et al. Enidemiology of tuberculosis in children in Kampala district. Llagnda, 2000-
25	241	10.	2010: a retrospective cross sectional study 2015 15 pp. 1.9
26	242	11	2010, u retrospective cross-sectional stady. 2015. 15 . p. 1-6.
27	343	11.	forward 2015 10(2) a 2.7
28	344	40	Jorwara. 2015. 19(2): p. 2-7.
29	345	12.	Organization, W.H., WHO UNICEF coverage estimates WHO World Health Organization:
30 31	346		Immunization, Vaccines and Biologicals. Vaccine preventable diseases Vaccines monitoring system
32	347		2019 Global Summary Reference Time Series: DTP3.[Cited 2020 Feb 12]. 2012.
33	348	13.	Rachlin, A., et al., <i>Routine vaccination coverage—worldwide, 2021.</i> 2022. 71 (44): p. 1396.
34	349	14.	Jheeta, M. and J.J.B.o.t.W.H.O. Newell, Childhood vaccination in Africa and Asia: the effects of
35	350		parents' knowledge and attitudes. 2008, SciELO Public Health. p. 419-419A.
36	351	15.	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC), progress and challenges
37	352		with Achieving Universal Immunization Coverage, URL:
38	353		https://www.who.int/publications/m/item/progress-and-challenges
39	254	2022	
40	354 255	2022.	Chide Americani O.C. at al. Dravalance and correlates of a warvasianted Nicerian children and
41	355	16.	Chido-Amajuoyi, O.G., et al., <i>Prevalence and correlates of never vaccinated Nigerian children, aged</i>
42	356		1-5 years. 2018. 36 (46): p. 6953-6960.
45 11	357	17.	Cata-Preta, B.O., et al., <i>Zero-dose children and the immunisation cascade: understanding</i>
45	358		immunisation pathways in low and middle-income countries. 2021. 39 (32): p. 4564-4570.
46	359	18.	Arambepola, R., et al., Using geospatial models to map zero-dose children: Factors associated with
47	360		zero-dose vaccination status before and after a mass measles and rubella vaccination campaign
48	361		in Southern province, Zambia. 2021. 6 (12): p. e007479.
49	362	19.	Galles, N.C., et al., Measuring routine childhood vaccination coverage in 204 countries and
50	363		territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release
51	364		<i>1</i> . 2021. 398 (10299): p. 503-521.
52	365	20.	Murhekar, M.V. and M.S.J.T.L.G.H. Kumar, Reaching zero-dose children in India: Progress and
53	366		<i>challenges ahead.</i> 2021. 9 (12): p. e1630-e1631.
54 57			
55 56			
57			
51			

58

59

60

BMJ Open

1 2			
3	267	21	Johri M. S. Painal and S.I.T.I.G.H. Subramanian. <i>Drogress in reaching unuscingted (zero doco)</i>
4	260	21.	shildren in India 1002 2016; a multiloyal appendial anglysis of repeated cross sectional surveys
5	200		2021 0(12); n $a1607 a1706$
6	270	22	2021. 3 (12). p. e1097-e1700. VanderEnde K, et al. <i>Clobal routing vaccingtion coverage</i> 2017, 2018, 67 (45): p. 1261
7	370	22.	Valider Elide, K., et al., Global routine vaccination coverage—2017. 2018. 67 (45). p. 1201.
8	3/1	23.	Garcia-Moreno, C., et al., Global and regional estimates of violence against women: prevalence
9	372		and nealth effects of intimate partner violence and non-partner sexual violence. 2013: World
10	3/3		Health Organization.
11 12	3/4	24.	Nour, I.Y., et al., Predictors of immunization coverage among 12–23 month old children in
12	375		Ethiopia: systematic review and meta-analysis. 2020. 20 (1): p. 1-19.
14	376	25.	Alfaro-Murillo, J.A., et al., The case for replacing live oral polio vaccine with inactivated vaccine in
15	377		the Americas. 2020. 395 (10230): p. 1163-1166.
16	378	26.	Kanté, A.M., et al., Factors associated with compliance with the recommended frequency of
17	379		postnatal care services in three rural districts of Tanzania. 2015. 15 : p. 1-10.
18	380	27.	Azie, J.I., et al., <i>Reaching zero-dose children.</i> 2024. 8 (85): p. 85.
19	381	28.	Fetene, S.M., T.J.B.P. Gebremedhin, and Childbirth, Uptake of postnatal care and its determinants
20	382		in Ethiopia: a positive deviance approach. 2022. 22 (1): p. 601.
21	383	29.	Indicators, K.J.E. and ICF, Mini demographic and health survey. 2019.
22	384	30.	H., A., A new look at the statistical model identification. IEEE transactions on automatic control.
23 24	385		;19(6):716-23. 1974 Dec.
24 25	386	31.	H., G., Multilevel statistical models. John Wiley & Sons; 2011 Jul 8.
26	387	32.	Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: using
27	388		measures of clustering in multilevel logistic regression to investigate contextual phenomena. 2006.
28	389		60 (4): p. 290-297.
29	390	33.	Mangbassim, N.T., et al., Prevalence and factors associated with "zero-dose" in children 12 to 23
30	391		months in Togo. 2023. 9 : p. 12.
31	392	34.	WHO/UNICEF. national immunization estimate. 2021.
32	393	35.	Nchinjoh, S.C., et al., Factors Associated with Zero-Dose Childhood Vaccination Status in a Remote
33	394		Fishing Community in Cameroon: A Cross-Sectional Analytical Study. 2022. 10 (12): p. 2052.
34 25	395	36.	Berhanel, Y., A. Bekele, and F.J.E.M.J. Tesfave., Immunization (EPI) in Ethiopia: acceptance.
30	396		coverage, and sustainability. 2000. 38: p. 1-60.
30	397	37.	Mover, C.A., et al., The relationship between facility delivery and infant immunization in Ethiopia.
38	398		2013. 123 (3): p. 217-220.
39	399	38	Hajizadeh MILECH Socioeconomic inequalities in child vaccination in low/middle-income
40	400	50.	countries: what accounts for the differences? 2018
41	401	39	Glewwe PIIohr Why does mother's schooling raise child health in developing countries?
42	/02	55.	Evidence from Morocco 1999: n 124-159
43	102	40	Krishnamoorthy V and TLEP Rehman Impact of antenatal care visits on childhood
44	405	40.	immunization: a propensity score-matched analysis using nationally representative survey 2022
45	404		20 (A): n 602-600
46	405	/11	55(4). p. 005-009. Earrenkonf BA et al. Understanding household level risk factors for zero dose immunization in
47 78	400	41.	22 low and middle income countries 2022 19 (12): p. o0297450
40 49	407	40	Azehmud D.B. et al. Mother's Media Use and Children's Vassingtion Status in Indenesia: A
50	408	42.	Machinud, P.B., et al., Mother's Media Ose and Chinaren's Vaccination Status in Indonesia. A
51	409	40	Community-Based Cross-Sectional Study. 2022. 9 : p. 2333794X221092740.
52	410	43.	Sato, K.J.V., Geospatial and Time Trend of Prevalence and Characteristics of Zero-Dose Children in
53	411		ivigeria jrom 2003 to 2018. 2022. 10(9): p. 1556.
54	412	44.	Forsnaw, J., et al., The global effect of maternal education on complete childhood vaccination: a
55	413		systematic review and meta-analysis. 2017. 17(1): p. 1-16.
56			
57			
58			18

Page 20 of 20

BMJ Open

1 2			
3 4	414	45.	Douthit, N., et al., Exposing some important barriers to health care access in the rural USA. 2015.
5	415 416	16	129 (6): p. 611-620.
6 7	417	40.	2014. 168 (4): p. 385-386.
8	418	47.	Weigel, P.A., et al., Variation in primary care service patterns by rural-urban location. 2016. 32(2):
9 10	419		p. 196-203.
11	420		
12 13			
14			
15 16			
17 19			
18			
20 21			
22			
23 24			
25			
20 27			
28 29			
30			
31 32			
33 34			
35			
36 37			
38			
40			
41 42			
43			
44 45			
46 47			
48			
49 50			
51 52			
53			
54 55			
56			
57 58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig-1: Prevalence of zero dose children in Ethiopia using EDHS 2019.

Individual and community level maternal factors for zero dose children in Ethiopia using EDHS 2019: A mixed effect model

Journal:	BMJ Open
Manuscript ID	bmjopen-2024-085235.R4
Article Type:	Original research
Date Submitted by the Author:	19-Nov-2024
Complete List of Authors:	Agimas, Muluken Chanie; University of Gondar College of Medicine and Health Sciences, epidemiology; University of Gondar College of Medicine and Health Sciences, epidemiology Alemayehu, Meron Asmamaw; University of Gondar, Epidemiology Tesfie, Tigabu Kidie; University of Gondar, Department of Epidemiology and Biostatistics Tilahun, Werkneh Melkie ; Debre Markos University, Department of Public Health Asferie, Worku; Debre Tabor University, Departments of pediatric and neonatal Nursing Aweke, Mekuriaw Nibret; University of Gondar, Department of Nutrition ABEBE, MOGES; Debark University, Department of Nursing Yalew, Anteneh; Wolkite University, Department of Public health
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Evidence based practice, Global health, Health services research
Keywords:	IMMUNOLOGY, Immunity, Medicine, Epidemiology < INFECTIOUS DISEASES, Hospitals, Public

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez ony

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Individual and community level maternal factors for zero dose children in Ethiopia using

> mini-EDHS 2019: A mixed effect model Muluken Chanie Agimas¹, Meron Asmamaw Alemayehu¹, Tigabu Kidie Tesfie¹, Werkneh Melkie Tilahun², Worku Necho Asferie⁴, Mekuriaw Nibret Aweke⁶, Moges Tadesse Abebe³, Anteneh Kassa yalew⁵ ¹Department of Epidemiology and Biostatistics, institute of public health, college of medicine and health science, university of Gondar, Gondar, Ethiopia. ²Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia. ³Department of Nursing, College of Health Science, Debark University, Debark, Ethiopia. ⁴Departments of pediatric and neonatal Nursing, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia ⁵Department of Public health, college of medicine and Health science, Wolkite University, Wolkite, Ethiopia. ⁶Department of Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Ethiopia Authors address: 1. Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com 2. Meron Asmamaw Alemayehu (MAA): merryalem101@gmail.com 3. Tigabu Kidie Tesfie (TKT): tigabukidie@gmail.com 4. Werkneh Melkie Tilahun (WMT): werkneh7wmt@gmail.com 5. Worku Necho Asferie (WNA): workunecho@gmail.com 6. Mekuriaw Nibret Aweke (MNA): mekunib@gmail.com 7. Moges Tadesse Abebe (MTA): moges7045@gmail.com 8. Anteneh Kassa yalew (AKY): antenehkassa28@gmail.com **Corresponding author:** Muluken Chanie Agimas (MCA): mulukensrc12@gmail.com For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Abstract

BMJ Open

Introduction: Zero-dose children refer to a child who has not yet received any childhood vaccines.

30	Globally, zero-dose children are the major public health problem. In sub-Saharan African
31	countries, among five children, one did not access the vaccines. But the efforts to identify the
32	factors contributing to the zero-dose child are not well addressed in Ethiopia.
33	Objectives: To assess individual and community-level maternal factors of zero-dose children in
34	Ethiopia using mini-EDHS 2019.
35	Methods: A secondary analysis of a cross-sectional study was used among a total of 3208
36	participants. The STATA-14 was used for descriptive and multilevel binary logistic regression
37	(mixed effect model) analysis. Model selection was conducted using AIC. To identify significant
38	factors for zero-dose children, a p-value of <0.05 with 95% confidence was used.
39	Results: The prevalence of zero-dose children among children aged 12-35 months old was 523
40	(16.3%, 95%CI, 15%–17.6%). Women with no antenatal care follow-up (Adjusted odds ratio =
41	1.55, 95% CI: 1.02–2.35), none educated women (Adjusted odds ratio = 1.47, 95% CI: 1.11–1.95),
42	women who gave birth at home (Adjusted odds ratio = 1.39, 95% CI: 1.04–1.86), women who had
43	poor wealth index (Adjusted odds ratio = 2.15, 95% CI: 1.62-2.85), and women from low
44	proportions of community media exposure (Adjusted odds ratio = $1.39, 95\%$ CI: $1.13-1.71$) were

45 the risk factors for zero-dose children in Ethiopia.

46 Conclusion: As compared to the previous studies, the prevalence of zero-dose children was low
47 in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth index, no
48 ANC visit, and women from low proportions of community media exposure were the risk factors

Page 4 of 19 BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

49 for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access

50 for women is highly recommended to reduce zero-dose child mortality.

51 Key words: zero-dose vaccination, maternal factors, Ethiopian Demographic Health Survey,
52 Ethiopia

- 53 Strength and limitation of the study
 - Using nationally representative sample increases the power of the study.
 - Additionally, proportional allocation of sample for each cluster and weighting the sample makes the study nationally representative.
 - But because we used secondary data and a cross-sectional study design, our study shared the limitations of the secondary data and the cross-sectional study.
 - Recall bias was also the limitation of the study.

60 Introduction

A zero-dose vaccine child is defined as a child who does not uptake any types of vaccines [1].
Globally, the uptake of childhood vaccines prevents 2.5 million child deaths each year [2, 3]. Onefifth of sub-Saharan African children never get the vaccines [4]. Childhood vaccination is the most
cost-effective strategy for vaccine-preventable diseases like poliomyelitis, measles, pneumonia,
hepatitis B virus, diphtheria, Haemophilus influenza type B (Hib), tuberculosis, diarrhea, and
others [5, 6]. Zero-dose children are more at risk for vaccine-preventable disease [7-10].

In Africa, due to non-uptake of basic vaccines, 30 million under-five children are attacked by
vaccine-preventable diseases, and 500,000 of them die each year [11]. In 2020, about 17 million
under-five children in low and middle-income countries were not take any vaccines [12]. Which means
the majority of zero-dose children are from low and middle-income countries, especially in African

Page 5 of 19

BMJ Open

and Southeast Asian regions [13]. The proportion of zero-dose vaccines is a good indicator of the
failure to achieve the national vaccination coverage goal in sub-Saharan Africa (90%) [14]. But
the COVID-19 pandemic was a threat to the immunization program, which increased the number
of zero-dose children by 37% [15].

Conducting research on zero-dose vaccines is very important for evidence-based strategies, interventions, and achieving the WHO goal [16]. Additionally, searching for evidence on the burden and factors of the zero-dose vaccine is crucial for childhood disability reduction [17-19]. Among factors affecting not taking any vaccine dose are lack of attention for the zero-dose population, rural residence, and low educational status [20-22]. Ethiopia is the fourth-leading contributor to global zero-dose children, despite considerable progress in the total number of infants being immunized [23]. As previous evidence showed, the distribution of vaccination among children in Ethiopia varied across the regions, and thus the lowest proportion (21%) of vaccinated children was reported in the Somali and Afar regions, and the highest proportion (89%) of immunized children was reported in the Amhara region [24]. Even though zero-dose children in Ethiopia are a public health concern, the efforts to identify the factors contributing to the zero-dose children and its prevalence are not well addressed. Therefore, studies are needed to assess the prevalence and determinants of zero-dose children in Ethiopia. Therefore, this study aimed to determine the prevalence and identify individual and community-level factors for zero-dose children in Ethiopia using the EDHS 2019 mixed effect model.

Objectives

91 To determine the prevalence of zero dose children in Ethiopia using mini-EDHS 2019

92 To identify factors for zero dose children in Ethiopia using mini-EDHS 2019

93 Methods

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA

rasmushogescl

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

94 Study design, area and period

The EDHS-2019 data was collected from March 21 to June 28, 2019, using a cross-sectional study design. Ethiopia is a low-income country located in the Horn of Africa, and its capital city is Addis Ababa. In Ethiopia, Dallol (128 meters above sea level) and Ras Dashen (4620 meters above sea level) are the lowest and highest latitudes above sea level, respectively [25]. Ethiopia has twelve administrative regions, namely Afar, Somalia, Harari, Amhara, Oromia, Gambela, South Ethiopia, Central Ethiopia, Tigray, Benishangul Gumuz, Sidama, and southwest Ethiopia. Addis Ababa and Dire Dawa are the two self-governed cities in Ethiopia. According to the December 27, 2023, worldometer estimate, Ethiopia has a total population of 128,073,400, and the rural population comprises about 77.9% of the total population [26].

Population

105 The source population was all women who had children prior to the survey, and women who had 106 children aged 12-35 months in the enumeration area were included in the study.

107 Variables

Dependent variable:

109 Zero dose children status (Yes, No)

Independent variables: wealth index, residence, educational status, place of delivery, cesarean
 delivery, religion, age of the women, ANC visit, media exposure, region, current breast feeding,
 current pregnancy

- 7 113 **Clustering variable:** EDHS cluster (V001)
- ¹⁹ 114 **Operational definition**

Zero dose children: are those that have not received any routine vaccine (yes for zero dose 116 children), otherwise classified as non-zero-dose vaccines (no) [27]. Similarly, the mini-EDHS

2019 classify children as zero dose children if not received any routine vaccine and otherwiseclassified as not zero dose children.

Media exposure: was assessed based on whether people had access to read newsletters, listen to
the radio, and watch TV. Accordingly, if they have access to all three media (newsletter, radio,
and TV) at least once a week, we categorized them as "yes", otherwise "no"[28].

Sampling method and procedure

The mini-EDHS 2019 sample was stratified and selected in two stages. Each region was stratified by urban and rural areas, with a total of 21 sampling strata. A total of 305 EAs, 93 EAs in urban areas, and 212 EAs in rural areas, were selected using proportional EA size allocation techniques. In the selected EAs, household listings were conducted. Then 30 households were selected per cluster using equal-probability systematic selection techniques. Finally, a multistage sampling method was used to select 3208 participants who had children aged 12-35 months in the selected EAs. The detailed section is reported in the mini EDHS 2019 report [29].

³ 130 **Data source, collection and quality assurance**

We used the secondary analysis of the mini-EDHS 2019 data set. This data was collected using a pretested structured interview technique from March 21 to June 28, 2019. The location of the data was also collected using a geographic positioning system (2 kilometers for urban clusters and 5 kilometers for rural clusters). To assure the quality of the data, pretesting and training for data collectors and supervisors were conducted. The detail section on data source, collection, and quality assurance has been reported in mini EDHS 2019 [29]. For the purpose of further analysis for the current study, data was requested online from the demographic health survey international at DHS's official website, http://www.dhsprogram.com. Then the data was accessed after 2

working days. After the data was accessed, variable selection, data cleaning, weighting the sample,
 recoding, and overall data management were conducted.
 Data processing and statistical analysis

After accessing the data from DHS International, cleaning, recoding, sampling weight, and missing data checking were conducted using STATA software version 14 and there was no missing data. Descriptive data was displayed by bar graph table and frequency. The "Svy" command was used as the sampling weight of cluster sampling. After this, multilevel (mixed-effect) binary logistic regression was used to identify the determinants for zero-dose children. The reason we used such a model was because of the hierarchical nature of the EDHS data and the possibility of considering a natural nesting of data. We built models like the null model (a model with an intercept/no predictors), model I (level one predictors), model II (a model with level two predictors), and model III (mixed effect model). The mixed effect model is:

Let y_{ij} denote the binary outcome for an individual *i* in neighborhood *j*, and assume y_{ij} follows a Bernoulli distribution with success probability p_{ij} or Binomial $(1, p_{ij})$. Using an appropriate link function such as logit, a binary outcome can be associated with linear predictors as the following, logit[$E(y_{ij})$] = logit(p_{ij}) = $\alpha_0 + X_{ij}\beta + Z_i\gamma + u_i$ [30].

155 Where $\alpha 0$ is the regular intercept, Xij β is the product of individual-level predictors and the 156 corresponding unknown parameters, and Zj γ is the product of neighborhood-level predictors and 157 the associated parameters. Within-neighborhood correlation is captured by uj which is usually 158 assumed to be a normally distributed random intercept with mean 0 and variance $\sigma 2u$ [31].

To test the clustering effect, the intra-class correlation coefficient was used with a cutoff of >0.05. (>5%). For each model, Intraclass correlation (ICC (ρ) = $\sigma^2 \epsilon/(\sigma^2 \epsilon + \sigma^2 \mu)$; $\sigma^2 \mu = \pi^2/3[32]$ was calculated. The clustering variable to show the clustering effect of zero-dose children was the

EDHS cluster (V001). The proportional change in variance (PCV=variance of the null model minus variance of the next model/variance in the null model*100), MOR=exp $\sqrt{2}$ x VA x 0.6745 $= \exp(0.95 \text{xVA})$ [32] and Akaike information criteria (AIC = 2k-2lnL, where k is the number of parameters and L is the maximum value of the likelihood function of the model) were also calculated. Then the best model was selected based on the lowest AIC value (Table 1). The significant variables were selected using the p-value less than 0.05 at 95%CL.

Table 1: A model comparison for zero dose children in Ethiopia using mini-EDHS 2019.

19 Random effect	Null model	Model I	Model II	Model III
20 21 Variance	0.27	0.199	0.21	0.118
22 ICC	38%	19%	31%	7.8%
²³ PCV (%)	Reference	26.3%	22.2%	56.3%
MOR MOR	19.8	1.93	3.56	1.67
26 Log likelihood	-1950	-1904	-1920	-1889
27 AIC	3905	3826	3848	3801
²⁸ 169			L	

28 29	169	
30 31	170	Results
32 33 34	171	Characteristics of the participants
35 36	172	Among a total of 3028 participants, about half, 1648 (51.4%), had no education. About 1447

(45.1%) and 2316 (72.2%) of them gave birth at home and had no ANC visit, respectively.

Furthermore, 1594 (49.7%) and 2442 (76.1%) of the participants had poor wealth index and were

from rural residence, respectively (Table-2).

Table-2: characteristics of the participants among women who had child aged 12-35 months

old in Ethiopia using mini-EDHS 2019.

Variable	Category	Weighted frequency	%
Wealth index	Poor	1594	49.7
	Middle	449	14
	Rich	1,165	36.3
Residence	Urban	766	23.9
	Rural	2442	76.1

2 3				1 (10	51 4
3 4		Educational status	No education	1648	51.4
			Primary	1080	33.7
6			Secondary	296	9.2
7			Higher	184	57
8		Religion	Orthodox	070	20
9		Kengloli	Catholio	18	29
10				10	0.0
11			Protestant	288	18.3
12			Muslim	1633	50.9
13 14			Traditional	32	1
15			Other	8	0.2
16		Region	Tigray	261	8.1
17		1	Afar	371	11.6
18			Amhara	20/	0.2
19			Oromia	209	9.2 12.4
20			Compli	290 201	12.4
21			Somali	321	10
22			Benishangul Gumuz	289	9
25 24			SNNPR	360	11.2
25			Gambela	247	7.7
26			Harari	251	7.8
27			Addis Ababa	180	5.6
28			Diredawa	236	74
29		Age	15-24 years	931	29
30		1160	25-34 years	1 719	53.6
31			> 35 years	558	17.4
32		ANC visit	Ves	802	27.8
27 22			No	2316	72.2
35		Place of delivery	Homo	1447	12.2
36		Flace of delivery	Hould facility	1447	45.1
37			Health facility	1/01	34.9
38		Media exposure	Yes	1501	48.0
39			N0	164/	51.4
40		Delivery by cesarean	No	3001	93.5
41 42		section	Yes	207	6.5
4Z 13		Currently breast feed	Yes	2376	74.1
44		-	No	832	25.9
45		Current pregnant	Yes	316	9.9
46			No	2892	90.1
47	178				
48 40					
50	179	Prevalence of zero dos	e children in Ethiopia		
51	100	The massel	laga abilduru - 1''	Idman a sa 1 10 25 (1	ald was 16 20/ (050/ OT
52 52	180	i ne prevalence of zero o	lose children among chi	laren agea 12-35 months	s old was 16.3% (95%Cl,
55 54	181	15%–17.6%) (Fig-1)			

Page 11 of 19

BMJ Open

182	Fig-1: Prevalence of zero	dose children in Ethio	pia using mini-EDHS 2019.
-----	---------------------------	------------------------	---------------------------

183 Factors associated with zero dose children

In the multivariable multilevel binary logistic regression analysis, wealth index, educational status, place of delivery, residence, media exposure, and ANC visit were the significant factors for zero-dose children in Ethiopia at a p-value of less than 0.05. Women with no ANC follow-up was 1.55 (AOR = 1.55, 95% CI: 1.02-2.35, p-value of < 0.001) times higher odds of zero does child than who had an ANC visit. Women with no education were 1.47 (AOR =1.47, 95% CI: 1.11–1.95, p-value of 0.0067) times higher odds of zero dose child than those who had secondary and above educational levels. Women who gave birth at home were 1.39 (AOR =1.39, 95% CI: 1.04–1.86, p-value of < 0.001) times higher odds of zero dose child than women who gave birth at the health facility. Women who had a poor wealth index were also 2.15 times (AOR = 2.15, 95% CI: 1.62– 2.85, p-value of 0.0078) higher odds of zero-dose child than rich women. Also, women from a low proportion of community media exposure were 1.39 (AOR =1.39, 95% CI: 1.13–1.71, p-value of<0.001) times higher odds of a zero-dose child than women from a high proportion of community media exposure. Furthermore, the women from the rural residence were 2.29 (AOR =2.29, 95% CI: 1.53-3.42, p-value of 0.004) times higher odds of zero-dose child than those among urban women (Table-3).

Table: 3 individual and community level maternal factors of zero dose children in Ethiopia using mini-EDHS-2019

Variables	Null	Model I	Model II	Model III(mixed)	p-value
	model				
ANC follow-up		AOR	AOR	AOR	
No		(95%CI)	(95%CI)	(95%CI)	
Yes		1.51(0.99, 2.29)		1.55 (1.02, 2.35)*	< 0.001
		Reference		Reference	

Residence				
Rural		3.78(2.59,	2.29 (1.53, 3.42)*	0.004
Urban		5.53) Reference	Reference	
Place of delivery				
Home	1.4(1.05, 1.88)		1.39 (1.04, 1.86)*	< 0.001
Health facility	Reference		Reference	
Community media				
exposure		1.34(1.13,	1.39 (1.13, 1.71)*	< 0.001
Low proportion of media		1.62)	Reference	
exposure		Reference		
High proportion of media				
exposure				
Wealth index				
Poor	2.99 (2.31, 3.87)		2.15 (1.62, 2.85)*	0.0078
Middle	1.3 (1.37, 2.48)		1.42 (0.94, 1.94)	
Rich				
	Reference		Reference	
Current breast feeding				
No	1.07(0.68, 2.12)		1.01(0.74, 1.29)	0.21
Yes	Reference		Reference	
Educational status				
No education	1.27(0.97, 1.64)		1.47(1.11, 1.95)*	0.0067
Primary education	0.88(0.69, 1.12)		0.95(0.75, 1.21)	
Secondary and above	Reference		Reference	
Current pregnancy				
No	1.59 (1.01,2.51)		1.9 (0.84, 2.49)	0.34
Yes	Reference	5	Reference	

Discussion

The prevalence of zero dose children among children aged 12-35 months old was 16.3%. Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and women from low proportions of community media exposure were the risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose children. Thus, the prevalence of zero dose children among children aged 12-35 months old was 16.3% (95% CI, 15%-17.6%). This finding was in line with a study conducted in Sub-Saharan Africa (16.5%) [1]. But it was lower than a study conducted in

Togo (26.88%) [33] and the WHO/UNICEF Estimates of National Immunization Coverage 2021 report, which estimated that 30% of surviving infants in Ethiopia were zero-dose children [34]. This might be because in the previous study, the vaccination card was considered to declare the vaccination status of the child, but the mother's report was not considered. This may overestimate the previous finding. The current finding was also lower than a study conducted in Cameroon (91.7%) [35]. The possible reason for the discrepancy might be that the study done in Cameroon was conducted in an area where access to health services is very low (the remote rural districts, the homeless population, and immigrants). This segment of the population is suffering from a lack of basic health services, including immunization. This causes a higher prevalence of zero dose children among children. In Ethiopia between 2000 and 2019, the basic vaccination coverage had progressed from 14.3% to 44.1%. The vaccination coverage was estimated to reach 53.6% by 2025; the reduction in zero dose child implies a significant improvement in vaccination coverage [36].

223 [36].

Regarding the factors associated with a zero-dose child, it was found that the odds of a zero-dose vaccine were higher among women who delivered at home than those who delivered at a health facility. This finding was supported by a study conducted in Cameroon [35], a study conducted in sub-Saharan Africa [1] and Ethiopia [37]. This can be explained by the fact that women who give birth at home miss childhood vaccines, including birth doses, and they may not get counselling on childhood vaccines, such as the advantages of vaccination, schedules of vaccine doses, and other related information. Moreover, home delivery may have a negative effect on the subsequent health-seeking behavior of women

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

The odds of a zero-dose child among poor wealth index women were more likely than those among rich wealth index women. This was supported by a study conducted in low- and middle-income countries [38]. This may be justified by the fact that women with low socioeconomic status have a lower acceptability of health-related messages and a lower understanding of the vaccination advantage [39]. Also, women who had no ANC follow-up were more likely to not vaccinate their child at all than women who had ANC follow-up. This finding is supported by a study conducted in India [40] and a study conducted among 82 low- and middle-income countries [41]. This might be associated with the fact that women who do not attend ANC could not get counselling and education services about the advantages and the time schedule of all basic vaccine doses. Alternatively, women who do not attend the ANC service are more likely to not attend health services after birth as well.

Additionally, the odds of zero-dose children among women who were from low proportions of community media exposure were higher than those among women who were from high proportions of community media exposure. This finding was supported by a study conducted in Indonesia [42]. The possible justification for this association may be due to a lack of media access in the community, which could negatively affect knowledge about the advantages and schedule of the childhood vaccine. Alternatively, women who are from low-community media exposure may miss key information released through media outlets. In return, they are more prone to not vaccinating all doses of vaccine for their children. Additionally, mass media exposure, such as through television, radio, newspapers, and the internet, in the community plays an important role in changing the community's attitude, opinion, awareness, and health service-seeking behavior. But women with a low proportion of community media exposure may lack these advantages. In addition, women who had no education also had higher odds of not vaccinating all doses of

Page 15 of 19

BMJ Open

vaccines for their child than women who had secondary or higher educational levels. A previous study conducted in Nigeria also reported that as educational levels increased, the zero-dose vaccine status decreased [43]. This may be because educational status is highly correlated with the knowledge and acceptance rate of vaccination [44]. Additionally, low educational status could be a barrier to accessing health services, including childhood vaccination. Furthermore, this study revealed that women who were from rural areas were more likely to not vaccinate their children at all than urban women. The access to health services is guite different between urban and rural [45]. This is due to the barriers to accessing preventive services in the rural areas, for example, lack of transportation, the far distance of health institutions, and the lack of adequate health professionals in rural areas who deliver the service [46, 47]. This study had several limitation for example; recall bias, unable to show cause-effect relationship and some clinically important variables were missed in the analysis. This bias/error was different in size and direction or the effect was not the same for groups in the study. Even though such limitations, the study provides an important tool for designing strategies and policies to reduce the number of zero-dose children in Ethiopia Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose child.

⁾ 271 Conclusion

As compared to the previous studies, the prevalence of zero dose children was low in Ethiopia. Variables like urban residence, no education, home delivery, poor wealth index, no ANC visit, and women from low proportions of community media exposure were the risk factors for zero-dose children in Ethiopia. Therefore, expanding maternal health services and media access for women is highly recommended to reduce zero-dose child.

277 Ethical declaration

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2024-085235 on 7 January 2025. Downloaded from http://bmjopen.bmj.com/ on June 14, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2	
3	2
4 5	
6	2
7	2
8 9	2
10	2
11	2
12	2
13 14	
15	2
16	
17	2
18 19	_
20	2
21	n
22	Z
25 24	2
25	-
26	2
27 28	
20 29	2
30	
31	2
32 33	-
34	2
35	2
36	2
37 38	2
39	
40	2
41 42	
42	2
44	
45	2
46 47	2
48	2
49	2
50	_
51	2
53	
54	3
55	
56 57	
57 58	
59	
60	

278	Ethical approval
279	Since it was a secondary data analysis of EDHS, informed consent from the participants was not
280	applicable. Rather, data requests and approval for access were obtained from DHS International.
281	All data were fully anonymized before we accessed informed consent from DHS international.
282	Consent for publication
283	Not required.
284	Data availability statement
285	All relevant data is available in the manuscript.
286	Conflict of interest
287	The author declares no conflict of interest
288	Funding
289	No
290	Acknowledgments
291	The authors would like to give thanks to DHS International for accessing the data.
292	Author Contributions
293	Conceptualization: Muluken Chanie Agimas
294	Formal analysis: Muluken Chanie Agimas, Meron Asmamaw Alemayewhu, Tigabu Kidie Tesfie,
295	Werkneh Melkie Tilahun
296	Investigation: Muluken Chanie Agimas and Meron Asmamaw Alemayewhu
297	Methodology: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
298	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
299	Software: Muluken Chanie Agimas, Werkneh Melkie Tilahun, Worku Necho Asferie, Mekuriaw
300	Nibret Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie

BMJ Open

2 3	301	Supervision: Muluken Chanie Agimas, Anteneh Kassa yalew
4 5 6	302	Validation: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
7 8	303	Tadesse Abebe, Anteneh Kassa yalew, Tigabu Kidie Tesfie
9 10 11	304	Visualization: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret Aweke, Moges
12 13	305	Tadesse Abebe, Anteneh Kassa yalew
14 15 16	306	Writing – review & editing: Muluken Chanie Agimas, Worku Necho Asferie, Mekuriaw Nibret
17 18	307	Aweke, Moges Tadesse Abebe, Anteneh Kassa yalew, Meron Asmamaw Alemayewhu, Tigabu
19 20	308	Kidie Tesfie
21 22 23	309	Muluken chanie Agimas (MCA) is guarantor of this article.
24 25	310	Abbreviation and acronym
26 27	311	AICAkaike information criteria
28 29 30	312	ANCAntenatal Care
31 32	313	DHSDemographic Health Survey
33 34	314	EAsEnumeration Areas
35 36 37	315	EDHSEthiopian Demographic Health Survey
38 39	316	LLRLog Likelihood Ratio
40 41	317	SNNPRSouth Nation and Nationality of People Representative
42 43 44	318	VPDsVaccine Preventable Diseases
45 46 47	319	Reference
48 49	320	1. Ozigbu, C.E., et al., Correlates of Zero-Dose Vaccination Status among Children Aged 12–59
50	321	Months in Sub-Saharan Africa: A Multilevel Analysis of Individual and Contextual Factors. 2022.
51	322 272	 10(1): P. 1052. Antai D L P i d Inequitable childhood immunization untake in Nizeria: a multilouel analysis of
52	323	2. Antai, D.J.B.I.a., inequitable chilanooa immunization uptake in Nigeria: a multilevel analysis of
53	324	individual and contextual determinants. 2009. 9 : p. 1-10.
54 55	325	3. wijsonge, C.S., et al., individual and contextual factors associated with low childhood
55 56 57	326	immunisation coverage in sub-saharan Africa: a multilevel analysis. 2012. 7 (5): p. e37905.
58		16
59		10
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

59

2			
3	327	4.	Bobo, F.T., et al., Child vaccination in sub-Saharan Africa: Increasing coverage addresses
4	328		inequalities. 2022. 40 (1): p. 141-150.
5	329	5.	Fokoun, C.J.H.V. and Immunotherapeutics, <i>Strategies implemented to address vaccine hesitancy</i>
0 7	330		in France: a review article. 2018. 14 (7): p. 1580-1590.
7 8	331	6.	Nathanson, N. and O.M.J.A.j.o.e. Kew, From emergence to eradication: the epidemiology of
9	332		poliomyelitis deconstructed. 2010. 172 (11): p. 1213-1229.
10	333	7.	Kretsinger, K., et al., Polio eradication in the World Health Organization African Region, 2008–
11	334		2012. 2014. 210 (suppl 1): p. \$23-\$39.
12	335	8.	Waziri, N.E., et al., Polio eradication in Nigeria and the role of the National Stop Transmission of
13	336	0.	Polio program 2012–2013, 2014 210 (suppl 1): p. S111-S117.
14	337	9	Brownwright, T.K., Z.M. Dodson, and W.G.L.B.n.h. van Panhuis, Spatial clustering of measles
15	338	5.	vaccination coverage among children in sub-Saharan Africa 2017 17 (1): n 1-7
16	330	10	Wobudeva E et al. Enidemiology of tuberculosis in children in Kampala district. Llagnda, 2009–
1/ 10	340	10.	2010: a retrospective cross-sectional study 2015 15 : n 1-8
10 10	340	11	Mihigo R et al. Routine immunization in the WHO African region: progress challenges and way
20	342	11.	forward 2015 19(2): p 2-7
21	2/2	17	Organization W.H. WHO LINICEE coverage estimates W.HO World Health Organization:
22	243	12.	Immunization, Vassings and Piologicals Vassing proventable disages Vassings monitoring system
23	244 245		2010 Clobal Summary Pafaranca Tima Sarias: DTD2 [Citad 2020 Eab 12] 2012
24	245	12	Pachlin A at al. Pouting vaccingtion covarga - worldwide 2020 Feb 12J. 2012.
25	240	15.	Rachini, A., et al., Routine vaccination coverage—wonawide, 2021. 2022. 71(44). p. 1590.
26	347	14.	Jineeta, M. and J.J.B.O.L.W.H.O. Newell, Childhood Vaccination in Africa and Asia: the effects of
27	348	1 5	parents knowledge and attitudes. 2008, Scielo Public Health. p. 419-419A.
28	349	15.	who/UNICEF Estimates of National Immunization Coverage (WUENIC), progress and challenges
29	350		with Achieving Universal Immunization Coverage, URL:
30	351		nttps://www.who.int/publications/m/item/progress-and-challenges
32	352	2022.	
33	353	16.	Chido-Amajuoyi, O.G., et al., Prevalence and correlates of never vaccinated Nigerian children, aged
34	354		1–5 years. 2018. 36 (46): p. 6953-6960.
35	355	17.	Cata-Preta. B.O., et al., Zero-dose children and the immunisation cascade: understanding
36	356		immunisation pathways in low and middle-income countries, 2021, 39 (32); p. 4564-4570.
37	357	18.	Arambepola, R., et al., Using geospatial models to map zero-dose children: Factors associated with
38	358	-	zero-dose vaccination status before and after a mass measles and rubella vaccination campaian
39 40	359		in Southern province, Zambia, 2021, 6(12): p. e007479.
40 41	360	19.	Galles, N.C., et al., Measuring routine childhood vaccingtion coverage in 204 countries and
42	361		territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020. Release
43	362		<i>1</i> , 2021 398 (10299): n 503-521
44	363	20.	Murhekar, M.V. and M.S.I.T.I.G.H. Kumar, <i>Reaching zero-dose children in India</i> : Progress and
45	364	20.	challenges ahead. 2021. 9(12): p. e1630-e1631.
46	365	21	Iohri M S Rainal and SITIGH Subramanian Progress in reaching unvaccingted (zero-dose)
47	366		children in India 1992–2016: a multilevel acospatial analysis of repeated cross-sectional surveys
48	367		2021 9 (12): n e1697-e1706
49 50	368	22	VanderEnde K et al. Global routine vaccination coverage -2017 2018 67 (45): n 1261
50 51	369	22.	García-Moreno C et al. Global and regional estimates of violence against women: prevalence
52	370	20.	and health effects of intimate nartner violence and non-nartner sevual violence 2012. Morld
53	271		Health Organization
54	371	24	Nour TV at all Predictors of immunization coverage among 12-22 month old children in
55	372	24.	Finance sustematic review and meta-analysis 2020 20 (1) p. 1.10
56	5/5		Liniopia. systematic review and meta-analysis. 2020. 20 (1). p. 1-19.
57			
58			17
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

BMJ Open

Alfaro-Murillo, J.A., et al., <i>The case for replacing live oral polio vaccine with inactivated vaccine in the Americas</i> , 2020, 395 (10230): p. 1163-1166.)pen:
Kanté, A.M., et al., Factors associated with compliance with the recommended frequency of postnatal care services in three rural districts of Tanzania. 2015. 15 : p. 1-10. Azie, J.I., et al., Reaching zero-dose children. 2024. 8 (85): p. 85.	first publi
Fetene, S.M., T.J.B.P. Gebremedhin, and Childbirth, <i>Uptake of postnatal care and its determinants in Ethiopia: a positive deviance approach.</i> 2022. 22 (1): p. 601.	shed as Pr
Indicators, K.J.E. and ICF, Mini demographic and health survey. 2019.	s 10 ote
H., A., A new look at the statistical model identification. IEEE transactions on automatic control. ;19(6):716-23. 1974 Dec.	.1136/t cted b
H., G., Multilevel statistical models. John Wiley & Sons; 2011 Jul 8.	y co
Merlo, J., et al., A brief conceptual tutorial of multilevel analysis in social epidemiology: using	оре руг
60 (4): p. 290-297.	n-2024 ight, iı
Mangbassim, N.I., et al., Prevalence and factors associated with "zero-dose" in children 12 to 23 months in Tago 2022 0 : p. 12	h-08
WHO/UNICEE national immunization estimate 2021	523 Idin
Nchinioh, S.C., et al., Factors Associated with Zero-Dose Childhood Vaccination Status in a Remote	5 or g fo
<i>Fishing Community in Cameroon: A Cross-Sectional Analytical Study.</i> 2022. 10 (12): p. 2052.	n 7,
Berhanel, Y., A. Bekele, and F.J.E.M.J. Tesfaye,, Immunization (EPI) in Ethiopia: acceptance,	Jan
coverage, and sustainability. 2000. 38: p. 1-60.	rela E
Moyer, C.A., et al., The relationship between facility delivery and infant immunization in Ethiopia.	/ 20 ated
2013. 123 (3): p. 217-220.	nus to
Hajizadeh, M.J.J.E.C.H., Socioeconomic inequalities in child vaccination in low/middle-income countries: what accounts for the differences? 2018.	Down shoges text au
Glewwe, P.J.J.o.h.r., Why does mother's schooling raise child health in developing countries?	iloa scho nd c
Evidence from Morocco. 1999: p. 124-159.	ded data
Krishnamoorthy, Y. and T.J.F.P. Rehman, Impact of antenatal care visits on childhood	i mi
<i>immunization: a propensity score-matched analysis using nationally representative survey.</i> 2022. 39 (4): p. 603-609.	m http ning, /
Farrenkopf, B.A., et al., Understanding household-level risk factors for zero dose immunization in 82 low-and middle-income countries. 2023. 18 (12): p. e0287459.	o://bmj Al train
Machmud, P.B., et al., Mother's Media Use and Children's Vaccination Status in Indonesia: A Community-Based Cross-Sectional Study. 2022. 9: p. 2333794X221092740.	open.k iing, a
Sato, R.J.V., Geospatial and Time Trend of Prevalence and Characteristics of Zero-Dose Children in Nigeria from 2003 to 2018. 2022. 10 (9): p. 1556.	nd sim
Forshaw, J., et al., The global effect of maternal education on complete childhood vaccination: a systematic review and meta-analysis. 2017. 17 (1): p. 1-16.	m∕ on . ilar teo
Douthit, N., et al., <i>Exposing some important barriers to health care access in the rural USA</i> . 2015. 129 (6): p. 611-620.	June 1 chnolo
Grant, R., et al., <i>Transportation barriers to child health care access remain after health reform.</i> 2014. 168 (4): p. 385-386.	4, 202)gies.
Weigel, P.A., et al., <i>Variation in primary care service patterns by rural-urban location</i> . 2016. 32 (2): p. 196-203.	5 at Dep
	artment
10	: GEZ-L
	TA
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BN

BMJ Open

Fig-1: Prevalence of zero dose children in Ethiopia using EDHS 2019.

