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ABSTRACT
Global Positioning System (GPS) technology is increasingly 
used in health research to capture individual mobility 
and contextual and environmental exposures. However, 
the tools, techniques and decisions for using GPS data 
vary from study to study, making comparisons and 
reproducibility challenging.
Objectives  The objectives of this systematic review 
were to (1) identify best practices for GPS data collection 
and processing; (2) quantify reporting of best practices in 
published studies; and (3) discuss examples found in reviewed 
manuscripts that future researchers may employ for reporting 
GPS data usage, processing and linkage of GPS data in health 
studies.
Design  A systematic review.
Data sources  Electronic databases searched (24 
October 2023) were PubMed, Scopus and Web of Science 
(PROSPERO ID: CRD42022322166).
Eligibility criteria  Included peer-reviewed studies published 
in English met at least one of the criteria: (1) protocols involving 
GPS for exposure/context and human health research purposes 
and containing empirical data; (2) linkage of GPS data to other 
data intended for research on contextual influences on health; 
(3) associations between GPS-measured mobility or exposures 
and health; (4) derived variable methods using GPS data in 
health research; or (5) comparison of GPS tracking with other 
methods (eg, travel diary).
Data extraction and synthesis  We examined 157 
manuscripts for reporting of best practices including wear 
time, sampling frequency, data validity, noise/signal loss 
and data linkage to assess risk of bias.
Results  We found that 6% of the studies did not disclose 
the GPS device model used, only 12.1% reported the per 
cent of GPS data lost by signal loss, only 15.7% reported 
the per cent of GPS data considered to be noise and only 
68.2% reported the inclusion criteria for their data.
Conclusions  Our recommendations for reporting on 
GPS usage, processing and linkage may be transferrable 
to other geospatial devices, with the hope of promoting 
transparency and reproducibility in this research.
PROSPERO registration number  CRD42022322166.

INTRODUCTION
Global Positioning System (GPS) devices 
are increasingly used in health research 

to quantify health risks or negative expo-
sures (eg, air pollutants, exposure to fast-
food restaurants) and positive exposures or 
outcomes (eg, green spaces, outdoor physical 
activity), often embedding GPS data in envi-
ronmental and contextual features. Appli-
cations of using GPS to track participants in 
air pollution, physical activity, active living, 
drug and alcohol addiction, obesity and 
exposomics research are being developed.1–4 
Inclusion of mobility in exposure research 
offers the opportunity to expand our under-
standing of how movement through space and 
time contributes to healthy and unhealthy 
exposures. The use of GPS has emerged 
as a more accurate and specific measure of 
individual mobility and results in ‘dynamic’ 
exposures as compared with ‘static’ exposure 
measures. Static measures are commonly 
taken from a home or administrative unit at 
one point in time,5 6 leading to a ‘stationary 
bias’.7 GPS measurement of mobility should 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ This systematic review used standard database 
search to find articles as well as citation assessment 
of review articles to encompass a comprehensive 
set of articles.

	⇒ Article types included association focused, meth-
odological development, feasibility studies and 
tracking tool comparisons providing a broad scope 
of Global Positioning System (GPS) applications in 
human health research.

	⇒ We used the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses reporting 
guidelines to report on results.

	⇒ We did not consider the necessity of differential re-
porting for certain health outcomes or subpopula-
tions studied.

	⇒ A potential limitation of this review was the omission 
of studies using mobile phone apps to collect GPS 
data.
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theoretically bring about a better alignment of dose and 
response relationships between contextual exposures and 
health outcomes.8 However, increased application of GPS 
technology is ushering in new and varied study designs, 
data collection methods and analytical processing pipe-
lines. This makes cross-study comparison and identifica-
tion of emergent findings across the literature difficult.

In general, GPS-based health research aims to quan-
tify risks and benefits of environmental and contextual 
features and typically involves deploying GPS devices to be 
worn for various lengths of time by participants. Crucial 
steps in this branch of research consist of the subsequent 
cleaning, processing and linking of GPS data to other 
measures, such as survey data, anthropometrics, physical 
activity data, neighbourhood characteristics or spatially 
explicit environmental exposures. Increasingly, multiple 
devices may be worn/used by participants and these 
data are linked to GPS data, including accelerometers, 
personal air pollution monitors and wearable cameras. 
At each stage in this research practice, decisions on data 
handling and processing are made which may influence 
the measurement of outcomes, risks or behaviours, and 
ultimately the study findings. Yet, little research discusses 
the impact of such decisions, how to report key decisions 
and/or evaluates best practices for these steps.

The significant variation in techniques used and meth-
odological aspects reported in GPS-based health and 
exposure research makes building evidence consensus 
difficult. Few studies examine how differences in data 
collection methodology or data processing may affect 
relationships between health outcomes and exposure 
measures, although there are important exceptions 
(eg, ref 9). Still, through the process of collecting and 
analysing GPS data, researchers have several methodolog-
ical choices which clearly impact the quality and complete-
ness of data collected. For example, several aspects of GPS 
usage are directly controlled by the researcher, including 
the choice of GPS device, which has been shown to be 
important for measurement of location accuracy, consis-
tency and duration,10 11 although most research-grade 
devices have similar performance when unobstructed.12 
Similarly, participant instruction, compliance and length 
of GPS wear time have also been shown to be important 
factors in generating reliable and representative mobility 
data.13–15 Other aspects of GPS usage relate to nuisances 
with the technology that affect completeness and accuracy 
of the data, including positional accuracy, uncertainty 
and missing data. For example, one aspect of GPS data 
collection involves characterising the amount of noise in 
the data (ie, error in calculation of the device location 
due to the low number of satellites available or multipath 
errors where GPS signals are reflected off buildings). 
Noise may then be filtered and removed from the dataset 
by researchers, based on some acceptable positional, alti-
tude or speed error thresholds. Besides noise removal, 
missing data can also be the result of signal loss, which 
may occur in similar scenarios as noise or due to errors 
in operating the GPS device. In such cases, the resulting 

dataset includes gaps in the time series. Some studies fill 
these gaps using an imputation method (eg, last known 
location up to a specified time limit), which has been 
shown to affect the linkage process and ultimately data 
loss.16 Yet, it is unknown how consistently spatial health 
and exposure research studies report these aspects of 
GPS usage and processing.

As the use of GPS devices in health and exposure 
research continues to increase, there is a considerable 
need to identify best methodological practices for data 
collection and processing. Without consistent method-
ological reporting, it will become impossible to gauge 
quality of studies and comparability of results. We define 
data collection and processing as the steps and proce-
dures employed to collect GPS data, clean it and prepare 
it for analysis in human health research, but does not 
include applying data transformations for creation of 
new variables (eg, trip classification, time spent at home, 
etc). Identifying collection and processing best practices 
will aid authors in reporting, making amalgamation and 
meta-analysis of results easier, and will increase reproduc-
ibility across studies. In an effort to promote transparency, 
replicability and rigour in studies using GPS devices worn 
by individuals to study human health (mirroring recent 
advances in physical activity17 and life course epidemi-
ology18 research) this systematic literature review aimed 
to: (1) identify and review best practices for GPS data 
collection and processing; (2) quantify reporting of GPS 
data best practice elements in published studies; and (3) 
discuss best practice applications with examples found in 
reviewed manuscripts that future researchers may employ 
for reporting GPS data usage, processing and linkage. 
Importantly, this systematic review is the first step in ulti-
mately a two-step process aimed at first understanding the 
current state of best practices and reporting, and second, 
building research community consensus on which prac-
tices should be reported in research using GPS for the 
measurement of human mobility and/or exposure assess-
ment for the purposes of health-related research. The 
focus of this review is the first step.

METHODS
Best practice manuscripts
First eight best practice manuscripts were specifically 
selected due to familiarity with the literature by the two 
senior authors (first and last). When reviewing best prac-
tice manuscripts, themes for relevant considerations 
and issues related to GPS data usage, processing and 
linkage were extracted and tallied across the articles 
(n=8).9 12 13 19–23 Themes were discussed and agreed on by 
the senior authors based on their combined experience 
of 40+ years of GPS data collection and processing. Some 
best practice manuscripts included empirical data to 
showcase these issues, while others were primarily concep-
tual. For each theme, subelements or specific practices 
discussed in the best practice manuscripts were used as 
data extraction elements for the reviewed manuscripts. 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 M

ay 22, 2025
 

h
ttp

://b
m

jo
p

en
.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

1 F
eb

ru
ary 2024. 

10.1136/b
m

jo
p

en
-2023-077036 o

n
 

B
M

J O
p

en
: first p

u
b

lish
ed

 as 

http://bmjopen.bmj.com/


3Pearson AL, et al. BMJ Open 2024;14:e077036. doi:10.1136/bmjopen-2023-077036

Open access

The subthemes were defined based on the stage at which 
they are employed in GPS data collection, processing or 
linkage. These practices then formed the basis of risk of 
bias assessment for the reviewed manuscripts.

We identified eight themes related to GPS usage and 
processing considerations among the best practice manu-
scripts (table  1). Under each theme, multiple ways of 
reporting this issue or decision/practice were found. For 
example, some manuscripts reported methods of imputa-
tion while others reported the percentage of GPS coordi-
nates that were imputed. The most common themes were 
GPS data missingness and noise considerations (in 88% 
of manuscripts), followed by participant compliance and 
sampling frequency.

The first theme identified in the best practice manu-
scripts was the model/brand of GPS device used. While 
research-grade devices appear to perform similarly in 
terms of accuracy when unobstructed, battery life, satel-
lite information and fix time may vary between units.12 
Thus, reporting the model/brand of the device may be 
useful to make comparisons across studies, and to eval-
uate the study protocol for wear time and participant 
compliance. The second theme was sampling frequency, 
or epoch, for capturing coordinates. The best practice 
manuscripts discussed the variety of sampling frequen-
cies commonly observed (from 1 s to 5 s) and the influ-
ence this decision has on processing time and costs.20 23 
Consideration of the study population (eg, children) may 

influence the sampling frequency selected and may also 
depend on the importance of fine precision in location 
detection.12 The third theme was wear time. Consider-
ations include the research question of interest and the 
rarity of the behaviour or exposure under study.12 Yet, 
some claim that studying behaviours that occur in specific 
places (eg, physical activity in a park) or seasonal varia-
tion in behaviour may require much longer wear time20 
than the typical GPS study (often 4 days which may or 
may not include a weekend day,13 or 7 days22). The fourth 
theme was GPS data missingness, which may be the result 
of signal loss, battery issues, non-compliance or memory 
storage capacity. One study reported missing data for 
around 70% of the total monitoring time21 and another 
reported over 17% missing for signal loss alone.19 The 
fifth theme was noise considerations, whereby signals 
are scattered by buildings of certain materials,21 or when 
indoors.13 Detection of noise in the GPS data may include 
filtering for unrealistic speed and acceleration values.12 
The sixth theme was imputation, which entails estima-
tion of coordinates for times with missing GPS data. 
Most commonly, nearest neighbour or the last known 
valid point13 19 20 methods were reported as imputation 
options. The seventh theme was linkage of GPS data to 
a variety of other data, including other sensor data (eg, 
personal air pollution monitor).22 The linkage process 
itself may also result in data loss for the analytical phase.19 
The eighth theme was data inclusion, which may vary 

Table 1  Themes and specific best practices discussed as relevant for GPS data collection and processing, identified in best 
practice manuscripts (n=8)

Best practice theme Discussed in n (%) manuscripts Specific best practices

P1—GPS device 4 (50)12 13 20 186 	► Brand of GPS device used
	► Model of GPS device used

P2—sampling frequency 6 (75)12 13 20 22 23 186 	► GPS sampling frequency

P3—wear time 6 (75)12 13 19 20 22 186 	► Days/periods of wear time

P4—GPS missing data 7 (88)12 13 19–21 23 186 	► Signal loss %

P5—noise 6 (75)12 13 19–21 23 186 	► Identification method of noise
	► Noise identification threshold
	► Noise %
	► Tool/method used for dealing with noise

P6—imputation 4 (50)12 13 19 20 	► Imputation performed
	► Imputation method
	► Imputation threshold
	► Tool used for imputation
	► Points imputed %

P7—linkage 6 (75)12 19–22 186 	► Data type linked
	► Linkage epoch
	► Tool used for linkage
	► Data lost in linkage process %

P8—data inclusion 6 (75)12 13 19 20 23 186 	► Criteria for data inclusion specified
	► Minutes of data to be a valid wear day/period
	► Valid wear days required
	► % participants lost due to compliance criteria

GPS, Global Positioning System.
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by subpopulation (eg, age) and lead to substantial data 
loss.19 Importantly, one manuscript empirically tested the 
potential for non-compliance to protocols to bias results, 
whereby certain ethnic or socioeconomic groups may be 
more likely to have lower rates of compliance and thus 
not be included in analysis.9

We did not tally the reporting of GPS device locational 
accuracy as an issue because there can be variation in 
performance among research-grade devices, though 
previous research indicated that most were able to detect 
location within metres when signal was unobstructed.24 
Smoothing is discussed in two best practice manuscripts, 
but its definition can be ambiguous ranging from upsam-
pling to remove possible errors to using kernel density 
estimators after initial data processing.12 20 The defini-
tion of smoothing was ambiguous depending on the 
researcher. Kerr et al define it as reduction of ‘random 
noise in complex datasets by focusing on the primary 
pattern in the data and replacing points outside that 
pattern with plausible points that match the pattern’12 (p 
536). Jankowska et al20 discuss smoothing of data through 
kernel density functions, which may be considered a post-
processing procedure to develop activity space metrics. 
The question of smoothing may better be understood 
in the context of noise processing decisions. While some 
manuscripts determined how noise was identified, few 
of those manuscripts disclosed how this was rectified. A 
better consensus on the definition, methods and report-
able results of smoothing may be needed. Thus, due 
to lack of clear definitions, we elected to not include 
smoothing as a theme.

Information sources, search strategies and keywords used in 
systematic review
An extensive search of electronic databases was 
conducted, including PubMed, Scopus and Web of 
Science, for relevant studies in the English language 
that focus on GPS data cleaning, processing or linkage 
and human health. We used the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses guide-
lines for reporting.25 The search terms used were (gps 
OR ‘geographic positioning system’ AND NOT ‘general 
practitioner*’ OR ‘general practice*’) AND (clean* OR 
imput* OR link* OR process* OR filter* OR join* OR 
stitch*) AND (human OR public) AND health’]. Exact 
search strategies, limits and filters for each database 
are provided in online supplemental file 1. The initial 
search was intended to capture a broad range of studies 
across disciplines concerned with GPS data and human 
health (n=3182) (see figure 1 for a flow diagram of this 
process). Studies not published in English were excluded 
at the search stage. Studies that were not peer-reviewed 
original research were excluded at the screening stage. A 
protocol of this review strategy was registered with PROS-
PERO (ID: CRD42022322166). While we did not include 
reviews in this systematic review, we did conduct back-
ward citation searching by checking the bibliographies 
of reviews that appeared in our search and cited methods 

in included manuscripts for additional eligible studies 
which met at least one of the inclusion criteria. The 
search was conducted on 24 October 2023 and included 
any publications prior to that date.

Eligibility criteria
This systematic review focuses on the published best 
practices for GPS data usage, processing and linkage in 
public health research as related to environmental and 
contextual exposures. Few studies explicitly focus on 
best practices, and instead include analytical details in 
methodological sections of a study. We first compiled the 
few best practice manuscripts. These were identified as 
manuscripts focused on discussion of best practices in 
the usage and processing of GPS data (with or without 
empirical data included). These manuscripts differ from 
review manuscripts in that the focus was not on systemati-
cally reviewing existing literature. Then, to cast a wide net 
to obtain as many studies as possible that may inform this 
review, included studies were required to meet at least 
one of the following criteria: (1) feasibility/pilot studies 
or protocols involving GPS in populations for exposure/
context and health research purposes and containing 
empirical data; (2) the development of a novel linkage of 
GPS data to other data intended for research on contex-
tual influences on health; (3) associations between GPS-
measured mobility or exposures and health outcomes; 
(4) derived variable methods (including algorithms) 
using GPS data in health research; or (5) comparison 
of GPS tracking with other methods (eg, travel diary). 
We permitted all manuscripts using the same cohort to 
be included because different research questions might 
yield different processing protocols. Existing literature 
reviews and commentaries on existing research were 
excluded.

Not included in the scope of this review were: (1) 
studies on GPS devices not worn by humans (eg, ref 26); 
(2) exclusive environmental measurement without any 
health component (eg, ref 27); (3) anonymised GPS data 
not linked to individuals (eg, ref 28); (4) the use of GPS 
to monitor people for healthcare or emergency services 
(eg, dementia patient tracking) (eg, ref 29); (5) compar-
isons of geocoding techniques or the spatial accuracy 
of GPS devices (eg, ref 30); (6) studies not containing 
empirical GPS data (eg, ref 31); and (7) studies that used 
a mobile phone or smartwatch for GPS tracking (eg, ref 
32) because of the heterogeneity in these devices/apps 
and their unknown calibration, and source(s) of loca-
tional data (ie, potential reliance on cell towers rather 
than satellites).

Data extracted from reviewed manuscripts
Using the themes and subelements found in the best 
practice manuscripts (table 1, P1–P8), we extracted infor-
mation about adherence to or reporting of each subele-
ment from all other studies included in our review. The 
full dataset can be found in online supplemental file 2.
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P1–P4 (GPS device, sampling frequency, wear time, GPS missing 
data)
For P1, GPS brand and model were identified. For non-
commonly used brands, custom devices or those that 
were inclusive of other monitoring devices (eg, air pollu-
tion devices), we classified brand and model as ‘other’. 
For studies noting more than one type of GPS device, 
we noted both devices’ brands and models. For P2, the 
sampling frequency in seconds was extracted. P3 wear 
time was coded by days of wear time as specified in the 
protocol or study guidelines, which does not necessarily 
indicate adherence by participants. Some protocols had 
unique wear periods by subgroups within a study or indi-
cated a range of days. In these cases, the average wear time 
was reported. For protocols requesting less than a day of 
wear time, we calculated the proportion of a 24-hour day. 
P4 was coded as the per cent of GPS signal loss or missing 
data before any imputation was performed.

P5 and P6 (noise and imputation)
As there is no overarching definition of ‘noise’ in the 
GPS and health literature, we define noise generally as 
GPS data that is not missing but is likely erroneous due 
to signal issues from interference in the environment or 
satellite connectivity. The method of noise detection was 
included if the study specified how noise was identified 
(eg, rapid speed changes, satellite inaccuracy readings, 
rapid elevation changes). Some studies reported visually 
assessing the data and removing points they considered 
erroneous. For these studies the method of noise detec-
tion was coded as ‘manual’. If no specific discussion of 
noise was included, the subsequent subcategories in P5 
were coded as ‘not applicable’ (n/a). Noise removal or 
correction thresholds (P5a) were extracted if specified 
(eg, altitude >800 m), as well as the per cent of points 
identified as noise (P5b). If a specific tool (P5c) was indi-
cated in the manuscript to handle noise, it was coded as 

Figure 1  Flow chart of systematic review process. GPS, Global Positioning System.
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the tool name or the custom software or toolbox. For 
some studies the authors also indicated additional manual 
noise cleaning, which was also indicated under P5c. For 
manuscripts that cited commonly used tools, we included 
default noise parameters if they were findable and unless 
otherwise specified by the manuscript authors.

P6 (imputation performed) indicated if the manuscript 
specified its imputation choices (yes or none) or did not 
mention imputation. If a manuscript indicated no impu-
tation was performed, or did not specify if imputation 
was performed, all other P6 columns were coded as n/a. 
P6a indicated the method used (eg, last known point), 
P6b identified the imputation threshold used to impute 
missing data, P6c identified the specific tool or algorithm 
used for imputation and, finally, P6d indicated the per 
cent of GPS points imputed.

P7 (linkage)
Data considered as ‘linked’ to GPS data were defined as 
data collected concurrently with the GPS device. This 
excluded postprocessing linkage with Geographic Infor-
mation System (GIS) data as well as survey responses or 
biometrics collected and then appended to individual 
datasets. For linkage we focused on if data were linked to 
GPS and the type of data linked, as well as the epoch or 
interval of linkage (P7a). If more than one data type was 
linked to GPS, each data type and epoch were recorded 
in seconds and averaged. When linkage was reported at 
the trip or location level, those epochs were not used to 
calculate median values. We also identified the tool used 
for data linkage (P7b) and the percentage of data lost 
due to linkage if specified (P7c). For studies that did not 
link any other data to GPS data, we indicated ‘none’, and 
all following P7 categories were coded as n/a.

For themes P5 (noise), P6 (imputation) and P7 
(linkage), many studies cite other manuscripts for details 
on processing procedures or decisions. If details on the 
themes and subelements could be found in those cited 
manuscripts, they were included as data for the original 
manuscript.

P8 (data inclusion)
Data inclusion was coded as ‘specified’ or ‘not speci-
fied’ (P8) to indicate if the manuscript had indicated 
how authors deemed a data point, wear period/day or 
participant’s compliance as valid for study inclusion. If 
specified, P8a and P8b provide further detail for noted 
wear periods/days or participant compliance required. 
For some types of studies, especially feasibility studies, 
the nature of the research did not require a data inclu-
sion criterion (eg, all available data were used). For such 
studies we indicated ‘n/a’. For many studies, the authors 
did not indicate if inclusion criteria were specific to GPS 
data or more generally applied to linked data (eg, accel-
erometer non-wear periods). We chose to include any 
noted data inclusion criteria. Other studies collected data 
over several periods and we noted the minimum require-
ments for each data collection period. Similarly, for 

P8c—per cent of participants lost—many studies did not 
indicate why participants were lost. Thus, for studies that 
reported participants lost to GPS data issues, that number 
is reported, while for studies that did not differentiate, 
the total number of participants lost is reported.

In addition to practices identified through the best 
practice manuscript themes, we also extracted year of 
publication, name of the journal, focal health outcome, 
risk or behaviour, and type of data linked with GPS data. 
The best practices were divided into GPS usage prac-
tices, or those related to the collection of GPS data in a 
study, and GPS processing practices, or those related to 
preparing GPS data for analysis after collection. For each 
manuscript included, we calculated the total number 
of practices reported separately for GPS usage and GPS 
processing practices.

RESULTS
Study selection process
Two reviewers (lead and senior author) conducted title 
and abstract screening of the articles using the program 
Covidence. Inclusion/exclusion conflicts between 
reviewers were identified in Covidence and were resolved 
in a meeting whereby inclusion criteria were reviewed, 
and reasons for not meeting criteria were discussed. A 
total of 255 publications progressed to full-text screening 
by reviewers (figure 1). Next, bibliographies of excluded 
review manuscripts33–46 were checked and methods cited 
in included manuscripts were checked for possible inclu-
sion. This process yielded an additional 36 manuscripts 
that were reviewed in full. Finally, within included manu-
scripts, if additional methods manuscripts were cited 
as key information sources for GPS data processing, we 
reviewed those manuscripts (n=21 additional manu-
scripts). We excluded manuscripts based on the following 
exclusion criteria: GPS data collection was planned 
but not yet carried out (eg, protocol without empirical 
data) (n=10), GPS devices were not used for exposure/
contextual measures (eg, the GPS was only used for iden-
tifying the coordinates of an individual) (n=52), a mobile 
phone app was used for collecting coordinates (n=49), 
GPS device was not used for human mobility (n=7), only 
anonymised GPS data collected (n=1), a sole focus on GPS 
device comparison (n=3), a review paper or commentary 
(n=18), abstract only retrieved (n=11) or not available 
in English (n=2). Ultimately, 157 total manuscripts were 
selected for inclusion in this review.

Characteristics of studies included in the systematic review
Table 2 identifies characteristics of studies included. Out 
of the 157 publications included in this review, 107 were 
associations between GPS-measured mobility or exposures 
and health outcomes,33 47–152 11 were comparisons of GPS 
tracking with other methods (eg, travel diary),153–162 22 
were feasibility/pilot studies or protocols involving GPS 
in populations for exposure/context and health research 
purposes and containing empirical data,41 163–183 5 were 
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focused on the development of a novel linkage of GPS 
data to other data intended for research on contextual 
influences on health16 184–187 and 12 were focused on 
derived variable methods (including algorithms) using 
GPS data in health research.14 188–198 All papers were 
published from 2007 onwards. The most common jour-
nals of publication were Health & Place and International 
Journal of Environmental Research and Public Health, followed 
by American Journal of Preventive Medicine and International 
Journal of Behavioral Nutrition and Physical Activity (data not 
shown in tabular form).

Of the focal health outcomes and risks, almost half 
(45.9%) evaluated physical activity, followed by mobility 
(34.4%), neighbourhood-built environment exposures 
(29.9%) and other outcomes (eg, therapeutic expe-
rience, asthma, community participation) (17.8%) 
(table 2). The most commonly linked data were acceler-
ometry (54.1%), followed by GIS data (49.0%) and travel 
diary/log (29.9%).

Consistency in reporting of best practices
Results of evaluating the selected four GPS usage practices 
and five GPS processing practices are shown in table 3. 
In evaluating practices reported for GPS usage, 93.6% 
reported brand of GPS device (most commonly Qstarz, 

followed by GlobalSat and Garmin), 91.7% reported 
model (most commonly Qstarz BT-1000XT) and 88.5% 
reported GPS sampling frequency (median=15 s). All but 
one study reported GPS days of wear time (median=7).

In evaluating practices reported for GPS processing, 
only 52.9% of studies reported identifying noise and 
more specifically their method for noise detection (most 
commonly speed, elevation and satellite accuracy). Of 
those that include noise identification, most reported the 
threshold for noise detection (75.9%) and the tool used for 
detection (83.1%, most commonly personal activity loca-
tion measurement system (PALMS)). The noise threshold 
was most commonly speed >130 km/hour or delta eleva-
tion >1000 m (PALMS default parameters). Only 15.7% of 
these studies reported the per cent of GPS points consid-
ered to be noise (median=0.4%). About 31% of studies 
reported whether they employed imputation. Of those 
who reported imputing missing GPS data, all of them 
reported the imputation method, and 81.6% reported 
the tool. Almost 70% reported the imputation threshold, 
but only 15.7% reported the number of imputed points 
(median 15.5%). Of studies that conducted data linkage 
with GPS data (n=132), all reported which data were 
linked. However, only 87.9% reported the linkage epoch 
(median=60 s), 61.4% reported the tool for linkage (most 
commonly PALMS) and 20.5% reported the data loss 
through the linkage process (median=11%). About 68% 
of studies reported the criteria for GPS data inclusion. Yet 
only 47.7% reported the minutes of data required to be a 
valid day (median=480) and 58.1% reported the number 
of valid days required (median=2). Over 90% reported 
participants lost by compliance criteria (median=3.6%). 
Of the included studies in this review, 81.5% reported all 
four GPS usage practices while <5% reported all general 
GPS processing practices (not including subthemes 
a–c/d—which were rarely reported).

When evaluating trends in reporting of GPS usage prac-
tices over time, there does not appear to be a clear pattern 
(figure 2A). However, all studies conducted prior to 2015, 
and in 2020 reported all practices. There does not appear 
to be a trend towards increased reporting over time. Like-
wise, temporal trends in reporting of GPS processing 
practices did not show a clear trend (figure  2B). But, 
overall, average reporting scores for GPS processing prac-
tices were much lower than those for GPS usage practices.

DISCUSSION
The aim of this review was to identify best practices of 
GPS data usage, processing and linkage in spatial health 
and exposure research, and assess the current state of 
reporting those practices. We explored the recommenda-
tions for reporting methods from best practice literature 
and then quantified reporting of GPS data best practice 
elements in published studies. To our knowledge, this is 
the first systematic review focused on the current state 
of GPS data usage, processing and linkage reporting, 

Table 2  Characteristics of studies included in analyses 
(n=157)

n %

Health outcomes and risks*

 � Physical activity 72 45.9

 � Mobility 54 34.4

 � Neighbourhood-built environment 
exposures

47 29.9

 � Other 28 17.8

 � Time spent outdoors 21 13.4

 � Air pollution exposures 20 12.7

 � BMI 15 9.6

 � Infectious disease 12 7.6

 � Mental health 10 6.4

 � General health 8 5.1

 � Biomarkers 6 3.8

Data linked with GPS*

 � Accelerometer 84 54.1

 � GIS data 77 49.0

 � Travel diary/log 47 29.9

 � Air pollutant measures 19 12.1

 � Qualitative data 14 8.9

 � Photographs/video 13 8.3

 � Biosensor 7 4.5

*Studies could include more than one response.
BMI, body mass index; GIS, Geographic Information System; GPS, 
Global Positioning System.
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mirroring efforts in allied sciences to promote scientific 
transparency and replicability.

The themes identified in best practice manuscripts 
included the model/brand of GPS device used, sampling 
frequency, wear time, GPS data missingness, noise consid-
erations, imputation, linkage of GPS data to a variety 
of other data and data inclusion criteria. These themes 
were each identified in at least 50% of the best practice 

manuscripts and were then used to assess reporting prac-
tices in our systematic review manuscripts. Of all papers 
included in the review, 81.5% reported GPS usage prac-
tices (P1–P3), however, only five papers (3.2%) reported 
on all GPS processing practices (P4–P6, not including 
subcomponents).

For our first practice—reporting GPS brand and 
model—8% of the studies in this review did not disclose 

Table 3  Practices reported in included manuscripts (n=157)

Practices reported
Studies meeting criteria, 
n (%)

Most frequent (number of studies 
or median)

P1a Report brand of GPS device used 147 (93.6) Qstarz (78)

P1b Report model of GPS device used 144 (91.7) BT-1000XT (57)

P2 Report sampling frequency, s 139 (88.5) 15

P3 Report days of wear time 156 (99.4) 7

P4 Report GPS points lost by signal interference, % 
total

19 (12.1) 20.6

P5 Identify method of GPS noise 83 (52.9) Speed, elevation, satellite accuracy

Of studies that included noise identification (n=83)

P5a Threshold for removal/rectification of GPS 
noise

63 (75.9) Speed >130 km/hour, delta elevation 
>1000 m

P5b Number of GPS points considered to be noise, 
% total

13 (15.7) 0.4

P5c Tool used for dealing with noise 69 (83.1) PALMS

P6 Specify if imputation was performed 48 (30.6) –

Of studies that performed imputation (n=39)

P6a Imputation method 39 (100) Comparison with activity logs

P6b Imputation threshold 27 (69.2) Any missing data

P6c Tool used for imputation 31 (81.6) R script

P6d Number of imputed GPS points, % total 6 (15.4) 15.5

P7 Studies that included data linkage 132 (84.1) Accelerometer

Of studies that linked data (n=132)

P7a Linkage epoch in seconds 116 (87.9) 60 s

P7b Tool used for linkage 81 (61.4) PALMS

P7c Data loss through linkage process, % total 27 (20.5) 11

P8 Report criteria for data inclusion (denominator=148)* 101 (68.2) –

P8a Minutes of data to be a valid day/period 
(denominator=130)†

62 (47.7) 480

P8b Number of valid days of data required 
(denominator=136)†

79 (58.1) 2

P8c Participants lost by compliance criteria, % 
sample
(denominator=157)

142 (91.0) 3.6

Studies reporting all GPS usage practices (P1–P3) 128 (81.5)

Studies reporting all general GPS processing practices 
(P4–P6 and P8 (not a–c/d items), excluding P7 as not all 
studies linked data)

5 (3.2)

*The denominator excludes studies that explicitly state they do not report inclusion criteria due to exploratory, feasibility or other study-
specific reasons.
†The denominator excludes previously excluded studies from P8, or cannot define a set number of days to be included in analysis (P8b).
GPS, Global Positioning System; PALMS, personal activity location measurement system.
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the GPS device model used, while 6% did not report 
brand. This limits understanding of the capability or 
comparability of devices across studies, as devices have 
different levels of locational precision and varying lengths 
of time to acquire a signal.20 Still, most research-related 
devices yield similar accuracy when unobstructed.12 If 
researchers deploy previously unvalidated devices, this 
might be an important limitation or weakness of the 
study’s ability to measure relationships between location 
and health outcomes. Similarly, reporting GPS device 
wear protocols is important, as they may affect the reli-
ability and generalisability of findings. We found that all 
but one study reported the amount of requested wear 
time, but only 68.2% reported the inclusion criteria 
for their data, whether that be at the data point, day or 
person level. Because so much processing must occur to 
raw GPS data, specificity in what is considered a ‘valid’ 
point can clarify the quality of the data, as well as assist 
the researcher in reporting thresholds and other aspects 
of data cleaning within a manuscript. While some studies 
operated on a subday level, understanding the parame-
ters for inclusion of observation days is relevant because 
a study that requires 3 days of GPS wear time may find 
stronger or weaker associations between exposures and 
health outcomes than a study that requires 7 days. The 
3-day study may overestimate or underestimate a given 
exposure if, for example, the observation period does not 
include a representative sample of participants’ extent of 
activity spaces (eg, weekdays only). Previous research has 
found that at least 14 days of valid GPS data are required 
to obtain a representative sample of participants’ activity 
spaces.14 However, this may differ depending on the 
risks or outcomes of interest or the population under 
study. Future research is needed into GPS wear protocols 
and processing steps which may affect associations with 
specific health outcomes or exposures.

Assessment, processing and reporting of missing data 
via signal loss, noise or linkage was highly inconsistent 
among studies. Review and reporting of missing data are 

important aspects of assessing possible bias in a study, espe-
cially if GPS or linked data missingness leads to removal 
of participants from a study. Additional sources of missing 
data can occur when using GPS models that automatically 
turn off when they do not sense activity or lose satellite 
signal, or when a researcher decides to exclude data 
outside of a specific study area. We found that only 12.1% 
of studies reported the per cent of GPS data lost by signal 
loss, only 15.7% reported the per cent of GPS data consid-
ered to be noise and none reported how much data were 
removed when rectifying data to a specific study area (not 
tallied or shown in tables). Of studies reporting amount 
of data loss from missing GPS data, numbers ranged from 
0.1% to 70% of data missing. Larger amounts of missing 
data may indicate a poorer estimate of GPS-derived 
metrics, effecting quality of a study and ability to compare 
results to other studies. Delineation of GPS errors due to 
device or satellite reception issues and methods for either 
removing for correcting such errors are important to 
report in studies because they may affect the strength of 
associations of environmental exposures or behavioural 
contexts with health outcomes. For example, noisy GPS 
data or missing GPS data may occur in dense urban 
areas, where heat island effects or air pollution may be 
the strongest. Further, specific participant characteristics 
may more often take them outside of a study area. Missing 
GPS data may underestimate participants’ environmental 
exposures and may bias the associations with the health 
outcome of interest. Further research is needed into the 
spatial variation in GPS positional errors and how they 
relate to specific exposures,199 which was beyond the 
scope of this review. Closely related to missing data is the 
decision of whether to impute missing or noisy data or 
not. While many studies chose to ignore missing data, 
some research has found that this can bias results particu-
larly when linking GPS to other data resources like accel-
erometers. At the minimum, reporting if imputation was 
performed or not (only 30.6% of studies reported this) 

Figure 2  Average scores and 95% CIs for Global Positioning System (GPS) usage (high=4, low=0; A) and processing (high=5, 
low=0; B) practices reported, by year.
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will help in identifying if a study may be prone to poten-
tial biases.16

Additionally, we noted that a fair amount of GPS data 
was lost (median 11%) through linkage to other devices 
or GIS data. The potential implications of these lost data 
varied by study type. For example, some studies were only 
interested in physical activity monitored by accelerome-
ters and therefore used the accelerometer epoch as the 
standard for linkage. The lost GPS data (which were not 
matched to accelerometer data) were then likely to have 
minimal impact on the quantification of physical activity 
and potentially minimal impact on study results. However, 
if the focus was to assess where physical activity or in what 
types of environments it was occurring, the data lost due 
to linkage could bias the results. In an existing review 
of studies using GPS units with accelerometers or travel 
diaries, 17 had missing or unusable data ranging from 
2.5% to 95% after linkage.15 We also noted that very few 
studies specified how data were kept after linkage, for 
example, if only data that included both GPS and the 
linked data resource as kept, or if all GPS data were kept 
no matter if it had a linkage. Although beyond the scope 
of this review, we further note that simplistic linkage of 
GPS data to other sources may lead to uncertainty in 
estimates of exposure. For example, some studies used a 
simple intersection between GPS and GIS layers to deter-
mine exposure, which assumes that there is no positional 
error in the GPS or GIS data. This may lead to misclassi-
fication of exposure. For example, in a study evaluating 
time spent in a park, if the GPS points fall outside of 
the GIS park perimeter, linkage may misrepresent expo-
sure time. Sensitivity analyses based on varying distance 
thresholds may help determine how variations in distance 
between GPS data and GIS layers may bias exposure esti-
mates.200 201 It is possible that missing data which results 
in removal or participants may bias the results of studies 
(although this was not formally assessed here). Very few 
manuscripts performed analysis comparing characteris-
tics of their retained sample compared with participants 
who had to be removed due to either GPS missing/noisy 
data or linkage issues (eg, missing at random analysis), 
with notable exceptions (eg, ref 9). In fact, few manu-
scripts reported how many participants were lost due to 
GPS data issues, instead amalgamating all lost partici-
pants together, regardless of reason for exclusion.

To promote reporting of practices and methods in this 
research area, we created an example table for best prac-
tice reporting (online supplemental table S1). This table 
provides examples for ways to report practices, reviewers 
to evaluate and readers to identify GPS data consider-
ations and potential biases. The table was designed based 
on real examples from the reviewed literature and makes 
use of the reporting themes identified in this review.

Limitations
While attempting to carry out an exhaustive review, there 
were certain aspects of GPS reporting and processing which 
we were not able to evaluate. For example, we did not 

consider the necessity of differential reporting for certain 
health outcomes. Future research may wish to provide 
guidance on an outcome-by-outcome basis (eg, for physical 
activity, depression, asthma). Moreover, our findings were 
not separated by subpopulations being studied (eg, child 
vs adult), though we do understand the need to modify 
methods should they not be appropriate for the popula-
tion of interest. Thus, future research may wish to review 
best practices for each subpopulation and provide relevant 
guidance. Another potential limitation to our review was 
the omission of studies using mobile phone apps and smart-
watches to collect GPS data. Although these devices are 
becoming commonplace, the decision was made to focus 
on ‘research grade’ GPS devices due to mobile phone apps 
often unknown calibration, source(s) of locational data and 
lack of homogeneity among these apps. However, by iden-
tifying best practices among research-related GPS devices, 
these practices can be transferred as applicable to mobile 
phone or smartwatch data collection and processing. Last, 
our restriction to evaluating studies published in English 
only is a limitation of this review and future studies pulling 
from non-English literature would be valuable.

Future research and policy implications
Though this review was focused on identifying best prac-
tices and assessing the current state of reporting on 
those practices, several ancillary areas of future research 
remain. For example, it is unknown how much uncer-
tainty not correcting or removing locational noise may 
be introduced to the estimation of exposure or how 
GPS wear protocols and processing steps could affect 
the detected associations with health outcomes. Future 
research may usefully estimate the magnitude of each of 
these practices and/or data loss on overall uncertainty or 
bias using a meta-analysis or similar approach. Perhaps 
the most evident need in future research, based on our 
findings, is a consensus on which practices should be 
reported, regardless of study design or research focus, 
and which practices may be optional. As mentioned in 
the Introduction section, this second step in our research 
process will make use of the themes identified in the 
current systematic review in order to build consensus 
among experts. With such a consensus, future geospatial 
health and exposure research will be more comparable, 
reliable and reproducible.

Because studies using GPS data may be used to quan-
tify harmful exposures, and thus inform policies aimed 
at protecting the public from those exposures, the desig-
nation of minimum reporting for comparisons across 
studies would allow us to ensure that policies are based 
on the best available science. Furthermore, enabling 
meta-analyses to pool findings and create best guidance 
for policy could be afforded by efforts to standardise 
reporting.

CONCLUSIONS
In summary, because there is currently no consensus for 
the optimal use or reporting of GPS data in spatial health 
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and exposure research, studies tend to report what they 
feel is essential, yielding such variety that comparisons 
across studies are challenging. Throughout this review 
process, we found a lack of consistency in both reporting 
and methods. Some manuscripts were meticulous in iden-
tifying and reporting their process and procedures, either 
in the main text or appendix. For other manuscripts, we 
had considerable difficulty finding processing decisions, 
criteria or other critical information. This review under-
scores that the current state of GPS usage and processing 
practices reporting has significant room for improve-
ment. Details pertaining to acquiring and processing of 
GPS data are vital so that future studies can fully assess the 
methods used, identify quality of data inclusion, compile 
findings in a meta-analysis or draw comparisons across 
studies.
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