

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Evaluating the definition of Severely Injured Patients: A Japanese Nationwide 5-Year Retrospective Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062619
Article Type:	Original research
Date Submitted by the Author:	05-Mar-2022
Complete List of Authors:	Toida, Chiaki; The University of Tokyo, Department of Disaster Medical Management; Yokohama City University Graduate School of Medicine, Department of Emergency Medicine Muguruma, Takashi; Yokohama City University Graduate School of Medicine, Department of Emergency Medicine Gakumazawa, Masayasu; Yokohama City University Graduate School of Medicine, Department of Emergency Medicine Shinohara, Mafumi; Yokohama City University Abe, Takeru; Yokohama City University Graduate School of Medicine, Department of Emergency Medicine Takeuchi, Ichiro; Yokohama City University
Keywords:	TRAUMA MANAGEMENT, EPIDEMIOLOGY, INTENSIVE & CRITICAL CARE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
۰. 47	
ربت م/	
4ð	
49	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
59	
60	

1	Article
2	Evaluating the definition of Severely Injured Patients: A
3	Japanese Nationwide 5-Year Retrospective Study
4 5	Chiaki Toida ^{1,2} *, Takashi Muguruma ² , Masayasu Gakumazawa ² , Mafumi Shinohara ² , Takeru Abe ² , and Ichiro Takeuchi ²
6	1 Department of Disaster Medical Management, The University of Tokyo, 7-3-1 Hongo,
7	Bunkyo-ku,
8	Tokyo 113-8655, Japan; toida-ygc@umin.ac.jp
9	2 Department of Emergency Medicine, Yokohama City University Graduate School of Medicine,
10	4-57 Urafunecho, Minami-ku, Yokohama 232-0024, Japan; mgrmtks@gmail.com (T.M.);
11	gakumazawa-tuk@umin.ac.jp (M.G.); s_mafumi@yokohama-cu.ac.jp (M.S.);
12	abet@yokohama-cu.ac.jp (T.A.); takeqq@yokohama-cu.ac.jp (I.T.)
13	* Correspondence: toida-ygc@umin.ac.jp; Tel.+81-3-3815-5411
14	Received: date; Accepted: date; Published: date
15	
16	Word count: 1961

1

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1 2		
3	17	Abstract:
5	18	Objectives: The definition of severely injured patients lacks universal consensus based on
6 7	19	quantitative measures. The most widely used definition of severe injury is based on the Injury
8 9	20	Severity Score (ISS), which is calculated using the Abbreviated Injury Scale (AIS) in Japan. This
10	21	study aimed to compare the prevalence, in-hospital mortality, and odds ratio (OR) for mortality in
11 12	22	patients with ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 by age groups.
13 14	23	Design: Retrospective cohort study.
15 16	24	Setting: Japan Trauma Data Bank, which is a nationwide trauma registry with data from 280
17 18	25	hospitals.
19 20	26	Participants: We utilized data of 117,201 injured patients from a national database. We included
21 22	27	injured patients who were transferred from the scene of injury by ambulance and/or physician.
23	28	Primary and secondary outcome measures: Prevalence, in-hospital mortality, and odds ratio (OR)
25	29	for mortality with respect to age and injury level (ISS group).
26 27	30	Results: In all age categories, the in-hospital mortality of patient groups with an ISS \geq 16, ISS \geq 18,
28 29	31	and ISS 26 was 13.3%, 17.4%, and 23.5%, respectively. The in-hospital mortality for patients
30	32	aged > 75 years was the highest (20% greater than that of the other age groups). Moreover, in-
31 32	33	hospital mortality for age group 5–14 years was the lowest (4.0–10.9%). In all the age groups, the
33	34	OR for mortality for patients with ISS \geq 16, ISS \geq 18, and ISS \geq 26 was 12.8, 11.0, and 8.4,
35 26	35	respectively.
36 37	36	Conclusions: Our results revealed the lack of an acceptable definition, with a high in-hospital
38 39	37	mortality and high OR for mortality for all age groups.
40 41	38	
42 43	39	Keywords: severely injured patient; trauma scoring system; anatomical severity definition;
44	40	mortality risk; Japan Trauma Data Bank
45 46 47	41	
48 49	42	Strengths and limitations of this study
50 51	43	> This study is the first nationwide study in Japan to evaluate in-hospital mortality and odds ratio
52 53	44	for mortality in patients with severe injury according to age.
54 55 56	45	> We used a nationwide multi-institutional trauma database with a large sample size.
57	46	> The Japanese nationwide dataset with more missing data may have led to selection bias.
58 59 60	47	> The Japan Trauma Databank had used AIS 90 until 2018, which is not newest measure.
	48	

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

The most widely used definition of severely injured patients is the Injury Severity Score (ISS),[6] which is calculated using the Abbreviated Injury Scale (AIS).[7] Thirty years ago, an ISS cutoff value of ≥ 16 was defined as 'severely injured' because patients with an ISS ≥ 16 had an expected mortality rate of > 20%.[1] However, the mortality of patients with an ISS ≥ 16 and ISS ≥ 26 decreased from 12.4% to 9.3% and from 25.4% to 20.3%, respectively, during the 10-year study period, due to a reduction in mortality and/or morbidity associated with organized trauma systems.[8]

Research based on the Japanese nationwide trauma registry has also shown that the in-hospital mortality trend has decreased in injured patients.[9–11] Moreover, there are more age-related differences in the mortality of severely injured patients in Japan than in the other developed countries because Japan has faced issues with the declining birth rate and aging population.[11,12] To date, no study has evaluated the validity of the definition of severe injury in a Japanese cohort using a detailed classification of the definition cutoff values and age groups. Therefore, this study aimed to compare the prevalence, in-hospital mortality, and odds ratio (OR) for mortality in patients with ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 as the commonly used anatomical injury definitions by age group.[2]

2.1. Study setting and population

2. MATERIALS AND METHODS

1. INTRODUCTION

consensus with quantitative measures.[2,3]

This retrospective observational nationwide study was conducted based on data obtained from the Japan Trauma Data Bank (JTDB), which registers data of patients with an injury and/or burn, and records prehospitalization- and hospital-related information. The JTDB includes data on demographic characteristics, comorbidities, injury types, mechanism of injury, means of transportation, vital signs, AIS score, prehospital/in-hospital procedures, injury diagnosis as indicated by the AIS, and clinical outcomes. In most cases, physicians trained in AIS coding record the online registration of individual patient data. There were 280 participating hospitals in all 47 prefectures in Japan, including 92% of the Japanese government-approved tertiary emergency medical centers in March 2019. The Japan Association for the Surgery of Trauma permits open

The terminology used to quantify anatomical injury severity has been vaguely described for

many decades using various phrases, such as severely injured and major trauma.[1-5] Although the

most widely used definitions continue to rely on patients who have a high mortality and morbidity

operations, intensive care, and complex rehabilitation programs, [4,5] the definition lacks a universal

risk and require intense medical resources, such as massive resuscitation, multiple surgical

Page 5 of 16

BMJ Open

84	access and updating of existing medical information and the Japan Correlation for Acute Medicine
85	evaluates the submitted data.
86	In this study, we used the JTDB dataset that included information from January 1, 2014 to
87	December 31, 2018, which initially yielded the data of 181,971 patients. The inclusion criterion for
88	this study was injured patients who were transferred from the scene of injury by ambulance and/or
89	physician. Patients with cardiac arrest on hospital arrival or with missing key data such as
90	mechanism, age, ISS, and/or survival outcome were excluded from this study. Figure 1 presents a
91	flow diagram of the patient selection process in this study.
92	
93	
94	2.2. Data collection
95	We collected information from the JTDB, including the following variables: demographic
96	characteristics (age [years], sex, injury mechanism, transportation type, transfer process), and
97	clinical parameters (AIS of the injured region, ISS). In the JTDB, a patient with an AIS of the
98	injured region ≥ 3 was defined as a case of a severely injured region.
99	
100	2.4. Ethics statement
101	This study was approved by the hospital ethics committee of Yokohama City University Medical
101	Center (approval no B170900003) The approval authority for data access was provided by the
103	Japanese Association for the Surgery of Trauma (Trauma Registry Committee). The requirement for
104	informed consent from the patients was waived owing to the observational nature of the study.
105	
106	2.5. Statistical analysis
107	The outcomes were as follows: prevalence, in-hospital mortality, and OR for mortality with respect
108	to age group $(0-4, 5-14, 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, \ge 75$ years) and injury
109	severity (ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 ; the ISSs of these groups were used as the definitions of
110	anatomical injury in a previous review article.[2]
111	Continuous variables are presented as medians with interquartile range (IQR, Q1-Q3), and
112	categorical variables are presented as the number and percentage of patients. The Mann-Whitney U
113	test and Wilcoxon's rank-sum test were used to analyze continuous variables, whereas the chi-
114	square test was used to analyze categorical variables. OR (95% confidence intervals, CI) for
115	mortality was calculated using a logistic regression model. All statistical analyses were performed
	Λ

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
17	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 52	
22	
54	
55	
56	
57	
58	
59	
60	

using STATA/SE software (version 17.0; StataCorp; College Station, Texas, USA). Statistical 116 significance was defined as a two-tailed P-value of <0.05. 117

118

1

119 2.6. Patient and public involvement

120 Patients and the public were not involved in the design, or conduct, or reporting, or 121 dissemination plans of this research. We will not directly disseminate our findings to involved

122 participants but plan to disseminate them through publication of this study.

123

3. RESULTS 124

During the 5-year study period, we analyzed the data of 117,201 injured patients transferred from 125 the scene of injury; 113,435 (97%) of them had blunt trauma (Figure 1) (Table 1). The median age 126 and ISS score were 64 years (IQR, 41–78) and 10 (IQR, 9–19), respectively. The overall in-hospital 127 128 mortality rate was 9.0%.

129 Table 1 shows the characteristics by age group and injury severity group during the 5-year study period. The number of patients with ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 was 48,028 (41% of all the 130 patients), 32,225 (28%), and 15,343 (13%), respectively. 131

Table 2 shows in-hospital mortality and OR for mortality with respect to age group and injury 132 severity. In all age categories, the in-hospital mortality of patients with ISS ≥ 16 , ISS ≥ 18 , and ISS 133 \geq 26 was 13.3%, 17.4%, and 23.5%, respectively. In each age category, the in-hospital mortality for 134 patients aged > 55 years was higher than that for younger age groups, and that of patients aged > 75135 years was higher (by more than 20%) than that of all patient groups for each level of injury severity. 136 In-hospital mortality for the 5-14 years age group was 4.0-10.9% and lower than that for the other 137 138 age groups.

In all age categories, the OR for mortality by patient group was 12.8 (11.9–13.8), 11.0 (10.4–11.6), 139 and 8.4 (8.0-8.8), respectively, for the three levels of injury severity, and the OR in patients with 140 141 ISS ≥ 16 or ISS ≥ 18 was higher than that in patients group ISS ≥ 26 .

142

of 16					BMJ Open			/bmjo by col			
								pen-2022 oyright, ii			
144	Table 1. Characteristics by the	nine age gro	ups and thr	ee levels of ir	ijury severity	groups.		-0626 ncludi			
	Variables	Overall	Age 0-4	Age 5-14	Age 15-24	Age 25–34	Age 35–44	ng Age 4 5-54	Age 55–64	Age 65–74	Age≥7
	variables	n = 117,199	n = 1095	n = 4079	n = 10,743	n = 7919	n = 9952	$p = \frac{1}{100}$	n = 13,931	n = 20,044	n = 36,
	Age, years	64 (41–78)	2 (1-3)	10 (7–12)	20 (17–22)	29 (27–32)	40 (38–42)	8 6 49 (4 6 −52)	60 (57–62)	69 (67–72)	83 (79-
	Male	16,317 (44)	675 (62)	2985 (73)	8095 (75)	6008 (75)	7710 (77)		10017 (72)	12662 (63)	16317
	Mechanism of injury							r 202 smu:			
	Blunt	113,435 (97)	1073 (98)	4020 (99)	10,477 (98)	7508 (95)	9361 (94)	text (94)	13,383 (96)	19,433 (97)	36,705
	Injury region							wnlc esch and o			
	Head injury with AIS \geq 3	36,244 (31)	439 (40)	1213 (30)	2798 (26)	1933 (24)	2527 (25)	data 3.63@28)	4451 (32)	7384 (37)	12,136
	Facial injury with AIS \geq 3	940 (0.8)	4 (0.4)	33 (0.8)	150 (1.4)	109 (1.4)	128 (1.3)		123 (0.9)	133 (0.7)	136 (0.
	Neck injury with AIS \geq 3	478 (0.4)	6 (0.6)	2 (0.1)	27 (0.3)	39 (0.5)	55 (0.6)	g, ¥0 ((15)	77 (0.6)	110 (0.6)	92 (0.3
	Chest injury with AIS \geq 3	256,723 (22)	148 (14)	622 (15)	2831 (26)	2110 (27)	2759 (28)	1 485	3726 (27)	4594 (23)	5448 (
	Abdominal and pelvic injury with AIS \geq 3	5407 (5)	27 (2)	185 (5)	805 (7)	591 (7)	682 (7)		684 (5)	831 (4)	893 (2)
	Spinal injury with AIS \geq 3	13,146 (10)	12 (1)	128 (3)	861 (8)	788 (10)	1120 (11)	and 530213)	2106 (15)	3053 (15)	3548 (
	Upper extremity injury with AIS \geq 3	6562 (6)	57 (5)	590 (14)	581 (5)	522 (7)	711 (7)		798 (6)	1026 (5)	1428 (4
	Lower extremity injury with AIS \geq 3	31,526 (27)	124 (11)	634 (16)	2143 (20)	1660 (21)	2055 (21)	ar 2 1 1 1 1 1 1 1 1 1 1	2691 (19)	4358 (22)	15,457
	Injury Severity Score	10 (9–19)	9 (4–16)	9 (5–16)	10 (5–19)	10 (6–20)	13 (9–20)	hng 3 (9521)	14 (9–21)	14 (9–21)	9 (9–17
	Actual in-hospital mortality	3361 (9.0)	23 (2.1)	48 (1.2)	354 (3.3)	310 (3.9)	372 (3.7)	og 17,4)	762 (5.5)	1438 (7.2)	3361 (9
	Injury Severity Score ≥ 16	48,028 (41)	376 (34)	1166 (29)	3878 (36)	3043 (38)	4076 (41)	5297 2 43)	6541 (47)	9711 (48)	13,940
	Injury Severity Score ≥ 18	32,225 (28)	187 (17)	747 (18)	2954 (28)	2305 (29)	2985 (30)	379 <u>30</u> 31)	4372 (31)	6256 (31)	8626 (2
	Injury Severity Score ≥ 26	15,343 (13)	62 (6)	367 (9)	1595 (15)	1129 (14)	1481 (15)	1823 5 (15)	2038 (15)	2910 (15)	3938 (

~

Page	8 of 16
------	---------

146	Table 2	2. In-hosp	ital morta	lity and od	ds ratio 1	for mortal	lity of patie	BMJ (nt group	Open s with ISS	≥ 16, ISS ≥	≥ 18, and	by copyright, incl∰i L				F
			Overall n = 117,19	9		Age 0–4 n = 1095			Age 5–14 n = 4079	ŀ		19 00 25,7 ing for use: 10,75	24 43		Age 25–3 n = 7919	4
		No. of patients	Mortality, %	OR (95%CI)	No. of patients	Mortality, %	OR (95%CI)	No. of patients	Mortality, %	OR (95%CI)	No. of patients	s related to	, OR (95%CI)	No. of patients	Mortality, %	OR (95%CI)
	ISS ≥ 16	48,028	13.3	12.8 (11.9–13.8)	376	5.9	44.6 (6.0–332.4)	1166	4.0	59.8 (14.5–246.7)	3878	3. Download hogeschool text and data	34.1 (21.4–54.2)	3043	9.8	48.2 (26.4–88.1)
-	ISS ≥ 18	32,225	17.4	11.0 (10.4–11.6)	187	11.2	57.3 (13.3–246.7)	747	5.8	40.6 (16.0–103.0)	2954	ed from nup a miniñg, Al	33.1 (22.6–48.5)	2305	12.2	25.7 (17.6–37.6
	ISS ≥ 26	15,343	23.5	8.4 (8.0–8.8)	62	17.7	18.4 (7.7–43.6)	367	10.9	56.6 (26.3–122.0)	1595	traini@g, ar	17.9 (14.1–22.8)	1129	19.9	19.6 (15.2–25.4
147 148 149 150 151 152 153 154 155											つ り	d similar technologies.				

Page	9 of 16								BMJ Open				6/bmjope 1 bv copv				
1 2 3 4	156											ŭ	en-2022-06261 rriaht. includii				
5 6 7 8			Age 35–44 n = 9952			Age 45–54 n = 12,188			Age 55–64 n = 13,931			Age 6 n = 20	9 on 23 Fel na for uses			Age ≥ 75 n = 36,705	
9 10 11 12		No. of patients	Mortality, %	OR (95%CI)	No. of patients	Mortality,	OR (95%CI)	No. of patients	Mortality, %	OR (95%CI)	No. of patients	Mortali %	oruary 202 Erasmus related to	OR (95%CI)	No. of patients	Mortality, %	OR (95%CI)
13 14 15		4076	8.7	29.2 (18.4–46.5)	5297	9.3	17.1 (12.4–23.6)	6541	10.8	16.2 (12.3–21.3)	9711	13.6	3. Downloa shogescho text and da	13.2 (11.0–16.0)	13940	20.2	10.5 (9.5–11.5)
17 18 19		2985	11.2	23.7 (16.8–33.4)	3793	11.7	12.0 (9.6–15.1)	4372	14.4	11.9 (9.8–14.4)	6256	18.6	aded from h ol . ata mining.	ad 11.2 from (9.8–12.9)	8626	27.4	10.5 (9.7–11.3)
20 21 22 23		1481	18.2	18.3 (14.5–23.2)	1823	17.7	10.3 (8.6–12.4)	2038	20.9	9.1 (7.8–10.6)	2910	24.6	http://bmjop Al training	7.4 (6.6–8.3)	3938	34.0	8.0 (7.3–8.6)
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	157	ISS, Inju	ıry Severity	Score; OR,	odds ratio	o; CI, confid	ence interva	al.		9	0		en.bmj.com/ on June 1, 2025 at Department GEZ and similar technologies.				
41 42 43 44 45 46						For peer re	eview only - I	http://bmj	jopen.bmj.co	om/site/abou	t/guidelir	ies.xhtml	z-LTA				8

4. DISCUSSION

To the best of our knowledge, this is the first nationwide study in Japan to evaluate in-hospital mortality and OR for mortality in patients with severe injury according to age. Our study showed that in all three groups with ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 , which are the commonly used anatomical injury definitions, in-hospital mortality for patients aged < 55 years was between 4.0% and 17.7% for each level of injury severity. Moreover, after evaluating the validity of the definition for severely injured patients in a Japanese cohort via the detailed classification of the definition cutoff values and age groups, there was no acceptable definition, with not only a high in-mortality

but also a high OR for mortality for all age groups.

Previous studies demonstrated that in 1990 when severe injury was defined as an ISS cutoff of ≥ 16 points, the mortality of patients with an ISS ≥ 16 was more than 20%; however, the mortality of these patients decreased; therefore, an ISS cutoff of ≥ 18 or 26 might be suitable for defining severely injured patients with a high mortality rate [1-3.8] This study also showed that patients with ISS \geq 26 had the highest in-hospital mortality in all age categories. However, the OR for mortality in

patients with ISS \geq 26 was lower than that in patients with ISS \geq 16 and ISS \geq 18. There are possible explanations for the lack of an accepted definition with a high in-hospital mortality and high OR for mortality in a Japanese cohort.

First, there are differences in the study era and/or cohorts at the time of development.[1] A previous 10-year nationwide study using the JTDB dataset from 2004 to 2013 demonstrated that the in-hospital mortality of patients with ISS ≥ 16 decreased from 28.5% to 15.7% due to improvements in trauma care and medical ambulance services.[9] Moreover, in the Japanese cohort, unlike the aging population in the rest of the world, the characteristics and survival outcome of severely injured patients varied widely according to age, and the mortality risk of elderly patients with severe injury was higher than that of the other age groups.[12] A previous Japanese nationwide study showed that the incidence rate of severe traumatic brain injury among severely injured patients aged > 65 years was high (40.7%).[13] Moreover, the in-hospital mortality of these patients was higher than that of the other age-groups.[13] These results suggest that the elderly patient groups had a higher mortality because of the high proportion and mortality of severe traumatic head injury. This study also showed that the prevalence and in-hospital mortality of severely injured patients aged 55–64, 65– 75, and \geq 75 years increased stepwise. However, in pediatric patients, a previous study suggested

that the ISS cutoff of ≥ 16 in adult patients was equivalent to that of ≥ 26 in pediatric patients.[14] A

- Japanese nationwide study using the JTDB dataset also showed that the in-hospital mortality of
 - pediatric patients with ISS ≥ 16 was 8.9% in 2018. However, this study showed that the in-hospital
 - mortality even for pediatric patients aged 5–14 years with ISS \geq 26 was low (10.9%). Therefore, it is
- important to develop an acceptable definition of severe injury by considering the age-related
 - characteristics and mortality risks in a Japanese cohort.
 - Second, there was a limitation in evaluating only anatomical severity as a definition of severe injury. A more recent approach suggests that the addition of other physiological variables to the

anatomical severity score has the advantage of identifying severely injured patients with a high mortality risk. [2,15,16]. Although the mortality of patients with ISS ≥ 16 was 18.7%, that of patients with ISS ≥ 16 in addition to one other physiological parameter increased from 35% to 38%.[2] Moreover, patients with an increasing number of the physiological variable, such as the Glasgow coma scale, hypotension, and laboratory values (e.g., acidosis and/or coagulopathy), may have an increased risk of mortality.[15–17] However, we could not evaluate the variables according to physiological parameters and findings of blood tests. Therefore, it seems important to evaluate these parameters together with the anatomical severity used in this study to develop a well-validated definition of severely injured patients. Our study had some limitations. First, there was selection bias because not all Japanese hospitals

that treat severely injured patients were registered in the JTDB. Moreover, the JTDB dataset has missing data, especially for pediatric patients.[18] A high-quality Japanese nationwide dataset with less missing data should be constructed to improve the accuracy of predicting the survival of injured patients. Second, because the number of patients aged 0-4 and 5-14 years was small (0.9% and 3.5% of all the patients, respectively), it is possible that the ORs of these patient groups with small sample sizes were overestimated. In addition, the number of participating hospitals differed across the study period. Furthermore, the JTDB used AIS 90 until 2018 and is now using the AIS 2005 updated 2008 coding scale. Similar studies need to be conducted using the newest measure to verify our results.

5. CONCLUSIONS

This is the first nationwide study in Japan to evaluate the prevalence, in-hospital mortality, and OR for mortality in patients with severe injury according to age categories. In all the three levels of anatomical injury, the in-hospital mortality for patients aged < 55 years was low. Evaluating the validity of the definition for severely injured patients in a Japanese cohort based on the detailed classification of the definition cutoff values and age categories revealed the lack of an acceptable definition, with not only a high in-hospital mortality, but also a high OR for mortality in all age categories.

Author Contributions: Conceptualization, CT and TM; methodology, CT; software, CT and TA;
validation, CT, TM, TA, MG, and MS; formal analysis, CT; investigation, CT, TM, MS, MG, and TA;
resources, CT and TA; data curation, CT and TA; writing—original draft preparation, CT; writing—
review and editing, CT, TM, MS, MG, TA, and IT; visualization, CT; supervision, IT; project
administration and funding acquisition, CT All authors have read and agreed to the published version of
the manuscript.

Funding: CT received a grant from the General Insurance Association of Japan [21-08].

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Informed Consent Statement: The requirement for informed consent from the patients was waived due

to the observational nature of the study design.

- Data Availability Statement: The approving authority for data access was the Japanese Association for
- the Surgery of Trauma (Trauma Registry Committee).
- Acknowledgments: None.
- Conflicts of Interest: The authors declare no conflict of interest.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

2 3 4	242	Ref	ferences
5	243	1	Champion HR, Copes WS, Sacco WJ et al. The major trauma outcome study: Establishing national
6 7	244		norms for trauma care. <i>J Trauma</i> 1990 ;30:1356–65. DOI:10.1097/00005373-199011000-00008.
8	245	2	Butcher N, Balogh ZJ. The definition of polytrauma: The need for international consensus. <i>Injury</i>
9 10	246		2009 ;40;Supplement 4:S12–22. DOI:10.1016/j.injury.2009.10.032.
11	247	3	Butcher N, Balogh ZJ. AIS > 2 in at least two body regions: A potential new anatomical definition
12 13	248		of polytrauma. <i>Injury</i> 2012 ;43:196–9. DOI:10.1016/j.injury.2011.06.029.
14	249	4	Rosoff L, Berne CJ. Management of acute hemodynamic and respiratory disturbances in the
15 16	250		severely injured patient. Surg Clin North Am 1968;48:1187–96. DOI:10.1016/s0039-
17	251		6109(16)38679-0.
18 19	252	5	Mahoney JW. Evaluation and diagnosis in the multiply injured patient. Clin Orthop Relat Res
20	253		1968 ;60:227–30. DOI:10.1097/00003086-196809000-00029.
21 22	254	6	Baker SP, O'Neill B, Haddon W Jr. et al. The injury severity score: A method for describing
23	255		patients with multiple injuries and evaluating emergency care. J Trauma 1974 ;14:187–96.
24 25	256		DOI:10.1097/00005373-197403000-00001.
26	257	7	Association for the Advancement of Automotive Medicine. The abbreviated injury scale. Revision
27 28	258		updated 1998. https://www.tarn.ac.uk/content/downloads/72/coding.pdf 1990.
29	259	8	Wong TH, Lumsdaine W, Hardy BM et al. The impact of specialist Trauma Service on Major
30 31	260		Trauma Mortality. J Trauma Acute Care Surg 2013;74:780–4.
32	261		DOI:10.1097/TA.0b013e3182826d5f.
33 34	262	9	Nagata I, Abe T, Uchida M et al. Ten-year inhospital Mortality trends for patients with trauma in
35	263		Japan: A multicentre observational study. BMJ Open 2018;8:e018635. DOI:10.1136/bmjopen-
30 37	264		2017-018635.
38	265	10	Hondo K, Shiraishi A, Fujie S et al. In-hospital trauma mortality has decreased in Japan possibly
39 40	266		due to trauma education. J Am Coll Surg 2013;217:850–7.e1.
41 42	267		DOI:10.1016/j.jamcollsurg.2013.05.026.
42 43	268	11	Toida C, Muguruma T, Gakumazawa M et al. Ten-year in-hospital mortality trends among
44 45	269		paediatric injured patients in Japan: A nationwide observational study. J Clin Med 2020;9:3273.
45 46	270		DOI:10.3390/jcm9103273.
47 48	271	12	Kojima M, Endo A, Shiraishi A et al. Age-related characteristics and outcomes for patients with
49	272		severe trauma: Analysis of Japan's nationwide trauma registry. Ann Emerg Med 2019;73:281-90.
50 51	273		DOI:10.1016/j.annemergmed.2018.09.034.
52	274	13	Toida C, Muguruma T, Gakumazawa M et al. Age- and Severity-Related In-Hospital Mortality
53 54	275		Trends and Risks of Severe Traumatic Brain Injury in Japan: A Nationwide 10-Year Retrospective
55	276		Study. J Clin Med 2021;10:1072. DOI:10.3390/jcm10051072.
56 57	277	14	Keskey EC, Hampton DA, Bierman H et al. Novel trauma composite score in a more reliable
58 59 60	278		predicator of mortality than injury severity score in pediatric trauma.

1 2		
3	279	15 Pape HC, Lefering R, Butcher N; et al. The definition of polytrauma revisited: An international
4 5	280	consensus process and proposal of the new 'Berlin definition'. J Trauma Acute Care Surg
6	281	2014 ;77:780–6. DOI:10.1097/TA.00000000000453.
7 8	282	16 Driessen MLS, Sturms LM, van Zwet EW; et al. Evaluation of the Berlin polytrauma definition: A
9	283	Dutch nationwide observational study. J Trauma Acute Care Surg 2021;90:694–9.
10 11	284	DOI:10.1097/TA.00000000003071.
12	285	17 Brockamp T, Maegele M, Gaarder C; et al. Comparison of the predictive performance of the BIG,
13 14	286	TRISS, and PS09 score in an adult trauma population derived from multiple international trauma
15	287	registries. Crit Care 2013;17:R134. DOI:10.1186/cc12813.
16 17	288	18 Toida C, Muguruma T, Gakumazawa M et al. Validation of age-specific survival prediction in
18	289	pediatric patients with blunt trauma using trauma and injury severity score methodology: A ten-year
19 20	290	nationwide observational study. BMC Emerg Med 2020 ;20:91. DOI:10.1186/s12873-020-00385-0.
21	291	
22 23	292	
24	293	
25 26	294	Figure Legend
27	295	Figure 1. Flow diagram of the patient selection process.
28 29	296	JTDB, Japanese Trauma Data Bank.
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1,2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	2,3
		reported	0.0
Objectives	3	State specific objectives, including any prespecified hypotheses	2,3
Methods			
Study design	4	Present key elements of study design early in the paper	2
Setting	5	Describe the setting, locations, and relevant dates, including periods of	3,4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	3,4
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	N/A
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4,5
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4,5
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	3,4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	4,5
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	4,5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	4,5
		(c) Explain how missing data were addressed	3,4
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(<u>e</u>) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	5
		eligible, examined for eligibility, confirmed eligible, included in the study.	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	3,4,5
		(c) Consider use of a flow diagram	5
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical social)	3,4,5
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	3
		(c) Summarise follow-un time (eg. average and total amount)	3
Outcome data	15*	Report numbers of outcome events or summary measures over time	5
Outcome uata	13.	report numbers of outcome events of summary measures over time	

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	5
		(b) Report category boundaries when continuous variables were categorized	5
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	5
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	5
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	10
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	9,10
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	10
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Evaluating the definition of Severely Injured Patients: A Japanese Nationwide 5-Year Retrospective Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062619.R1
Article Type:	Original research
Date Submitted by the Author:	16-Nov-2022
Complete List of Authors:	Toida, Chiaki; Teikyo University School of Medicine Graduate School of Medicine, Department of Emergency Medicine; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Muguruma, Takashi; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Gakumazawa, Masayasu; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Graduate School of Medicine, Department of Emergency Medicine Shinohara, Mafumi; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Abe, Takeru; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Takeuchi, Ichiro; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Medical management, Epidemiology
Keywords:	TRAUMA MANAGEMENT, EPIDEMIOLOGY, INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
2
3
4
5
6
7
8
å
9 10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
2- 1 2⊑
25
26
27
28
29
30
31
37
J∠ 22
22
34
35
36
37
38
39
10
4U 41
41
42
43
44
45
46
47
<u>4</u> 8
40 40
49 50
50
51
52
53
54
55
56
50
5/
58
59
60

1	Article
2	Evaluating the definition of Severely Injured Patients: A
3	Japanese Nationwide 5-Year Retrospective Study
4	Chiaki Toida ^{1,2} *, Takashi Muguruma ² , Masayasu Gakumazawa ² , Mafumi Shinohara ² ,
5	Takeru Abe ² , and Ichiro Takeuchi ²
6	1 Department of Emergency Medicine, Teikyo University School of Medicine Graduate School
7	of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8606, Japan; toida-ygc@umin.ac.jp
8	2 Department of Emergency Medicine, Yokohama City University Graduate School of Medicine,
9	4-57 Urafunecho, Minami-ku, Yokohama 232-0024, Japan; mgrmtks@gmail.com (T.M.);
10	gakumazawa-tuk@umin.ac.jp (M.G.); s_mafumi@yokohama-cu.ac.jp (M.S.);
11	abet@yokohama-cu.ac.jp (T.A.); takeqq@yokohama-cu.ac.jp (I.T.)
12	* Correspondence: toida-ygc@umin.ac.jp; Tel.+81-3-3815-5411
13	Received: date; Accepted: date; Published: date
14	
15	Word count: 1961

1 2		
3	16	Abstract:
5	17	Objectives: The definition of severely injured patients lacks universal consensus based on
6 7	18	quantitative measures. The most widely used definition of severe injury is based on the Injury
8 9	19	Severity Score (ISS), which is calculated using the Abbreviated Injury Scale (AIS) in Japan. This
10	20	study aimed to compare the prevalence, in-hospital mortality, and odds ratio (OR) for mortality in
11 12	21	patients with ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 by age groups.
13 14	22	Design: Retrospective cohort study.
15 16	23	Setting: Japan Trauma Data Bank, which is a nationwide trauma registry with data from 280
17 18	24	hospitals.
19 20	25	Participants: We utilized data of 117,199 injured patients from a national database. We included
21 22	26	injured patients who were transferred from the scene of injury by ambulance and/or physician.
23	27	Primary and secondary outcome measures: Prevalence, in-hospital mortality, and odds ratio (OR)
25	28	for mortality with respect to age and injury level (ISS group).
20	29	Results: In all age categories, the in-hospital mortality of patient groups with an ISS \geq 16, ISS \geq 18,
28 29	30	and ISS 26 was 13.3%, 17.4%, and 23.5%, respectively. The in-hospital mortality for patients
30	31	aged > 75 years was the highest (20% greater than that of the other age groups). Moreover, in-
31 32	32	hospital mortality for age group 5–14 years was the lowest (4.0–10.9%). In all the age groups, the
33	33	OR for mortality for patients with ISS \geq 16, ISS \geq 18, and ISS \geq 26 was 12.8, 11.0, and 8.4,
35 26	34	respectively.
36 37	35	Conclusions: Our results revealed the lack of an acceptable definition, with a high in-hospital
38 39	36	mortality and high OR for mortality for all age groups.
40 41	37	
42 43	38	Keywords: severely injured patient; trauma scoring system; anatomical severity definition;
44	39	mortality risk; Japan Trauma Data Bank
45 46 47	40	
48 49	41	Strengths and limitations of this study
50 51	42	> This study is the first nationwide study in Japan to evaluate in-hospital mortality and odds ratio
52 53	43	for mortality in patients with severe injury according to age.
54 55 56	44	> We used a nationwide multi-institutional trauma database with a large sample size.
57	45	> The Japanese nationwide dataset with more missing data may have led to selection bias.
58 59 60	46	> The Japan Trauma Databank had used AIS 90 until 2018, which is not newest measure.
00	47	

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1. INTRODUCTION

The terminology used to quantify anatomical injury severity has been vaguely described for many decades using various phrases, such as severely injured and major trauma.[1–5] Although the most widely used definitions continue to rely on patients who have a high mortality and morbidity risk and require intense medical resources, such as massive resuscitation, multiple surgical operations, intensive care, and complex rehabilitation programs,[4,5] the definition lacks a universal consensus with quantitative measures.[2,3]

The most widely used definition of severely injured patients is the Injury Severity Score (ISS),[6] which is calculated using the Abbreviated Injury Scale (AIS).[7] Thirty years ago, an ISS cutoff value of ≥ 16 was defined as 'severely injured' because patients with an ISS ≥ 16 had an expected mortality rate of $\geq 20\%$.[1] However, the mortality of patients with an ISS ≥ 16 and ISS ≥ 26 decreased from 12.4% to 9.3% and from 25.4% to 20.3%, respectively, during the 10-year study period, due to a reduction in mortality and/or morbidity associated with organized trauma systems.[8]

Research based on the Japanese nationwide trauma registry has also shown that the in-hospital mortality trend has decreased in injured patients.[9–11] Moreover, there are more age-related differences in the mortality of severely injured patients in Japan than in the other developed countries because Japan has faced issues with the declining birth rate and aging population.[11,12] To date, no study has evaluated the validity of the definition of severe injury in a Japanese cohort using a detailed classification of the definition cutoff values and age groups. We hypothesized that there would be differences in in-hospital mortality rate and risk among Japanese injured patients by age and anatomical severity. Therefore, this study aimed to compare the prevalence, in-hospital mortality, and odds ratio (OR) for mortality in patients with an ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 as the commonly used anatomical injury definitions by age group [2].

74 2. MATERIALS AND METHODS

2.1. Study setting and population

This retrospective observational nationwide study was conducted based on data obtained from the Japan Trauma Data Bank (JTDB), which registers data of patients with an injury and/or burn, and records prehospitalization- and hospital-related information. The JTDB includes data on demographic characteristics, comorbidities, injury types, mechanism of injury, means of transportation, vital signs, AIS score, prehospital/in-hospital procedures, injury diagnosis as indicated by the AIS, and clinical outcomes. In most cases, physicians trained in AIS coding record the online registration of individual patient data. There were 280 participating hospitals in all 47 prefectures in Japan, including 92% of the Japanese government-approved tertiary emergency medical centers in March 2019. The Japan Association for the Surgery of Trauma permits open

Page 5 of 16

1

BMJ Open

2	
3	85
4 5	86
6	87
8	88
9 10	89
11	90
12 13	91
14	92
15 16	93
17 18	94
19 20	95
21 22	96
23 24	97
25 26	98
27 28	99
29 30 31	100
32	404
33 34	101
35	102
36 37	103
38	104
39 40 41	105
42 43	106
44 45	107
46 47	108
47 48	109
49 50	110
51 52	111
53	117
54 55	112
56	11/
57 58	114
59 60	115
00	110

access and updating of existing medical information, and the Japan Correlation for Acute Medicine 5 6 evaluates the submitted data.

7 In this study, we used the JTDB dataset that included information from January 1, 2014 to 8 December 31, 2018, which initially yielded the data of 181,971 patients. The inclusion criterion for 9 this study was injured patients who were transferred from the scene of injury by ambulance and/or 0 physician. Patients with cardiac arrest on hospital arrival or with missing key data such as 1 mechanism, age, ISS, and/or survival outcome were excluded from this study. Figure 1 presents a flow diagram of the patient selection process in this study. 2

4 2.2. Data collection

We collected information from the JTDB, including the following variables: demographic 5 6 characteristics (age [years], sex, injury mechanism, transportation type, transfer process), and clinical parameters (AIS of the injured region, ISS). In the JTDB, a patient with an AIS of the 7 8 injured region ≥ 3 was defined as a case of a severely injured region.

9

2.4. Ethics statement 0

This study was approved by the hospital ethics committee of Yokohama City University Medical 1 Center (approval no. B170900003). The approval authority for data access was provided by the 2 3 Japanese Association for the Surgery of Trauma (Trauma Registry Committee). The requirement for informed consent from the patients was waived owing to the observational nature of the study. 4

2.5. Statistical analysis 6

7 The outcomes were as follows: prevalence, in-hospital mortality, and OR for mortality with respect to age group (0-4, 5-14, 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, ≥75 years) and injury 8 9 severity (ISS \geq 16, ISS \geq 18, and ISS \geq 26; the ISSs of these groups were used as the definitions of 0 anatomical injury in a previous review article.[2]

Continuous variables are presented as medians with interquartile range (IQR, Q1–Q3), and 1 2 categorical variables are presented as the number and percentage of patients. The Mann–Whitney U 3 test and Wilcoxon's rank-sum test were used to analyze continuous variables, whereas the chisquare test was used to analyze categorical variables. OR (95% confidence intervals, CI) for 4 5 mortality was calculated using a logistic regression model. All statistical analyses were performed using STATA/SE software (version 17.0; StataCorp; College Station, Texas, USA). Statistical 6 significance was defined as a two-tailed P-value of <0.05. 117

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

440	
118	
119	2.6. Patient and public involvement
120	Patients and the public were not involved in the design, or conduct, or reporting, or
121	dissemination plans of this research. We will not directly disseminate our findings to involved
122	participants but plan to disseminate them through publication of this study.
123	
124	3. RESULTS
125	During the 5 year study pariod, we analyzed the data of 117,100 injured nation to transformed from
125	building the 5-year study period, we analyzed the data of 117,199 injured patients transferred from the same of injury: 112 (25 (079/) of them had blunt trauma (Figure 1) (Table 1). The median age
120	and ISS score were 64 years (IOP, 41, 78) and 10 (IOP, 9, 10), respectively. The overall in bosnital
127	mortality rate was 6 1%
120	mortanty rate was 0.170.
129	Table 1 shows the characteristics by age group and injury severity group during the 5-year study
130	period. The number of patients with ISS \geq 16, ISS \geq 18, and ISS \geq 26 was 48,028 (41% of all the
131	patients), 32,225 (28%), and 15,343 (13%), respectively.
132	Table 2 shows in-hospital mortality and OR for mortality with respect to age group and injury
133	severity. In all age categories, the in-hospital mortality of patients with ISS ≥ 16 , ISS ≥ 18 , and ISS
134	\geq 26 was 13.3%, 17.4%, and 23.5%, respectively. In each age category, the in-hospital mortality for
135	patients aged > 55 years was higher than that for younger age groups, and that of patients aged > 75
136	years was higher (by more than 20%) than that of all patient groups for each level of injury severity.
137	In-hospital mortality for the $5-14$ years age group was $4.0-10.9\%$ and lower than that for the other
138	age groups.
139	In all age categories, the OR for mortality by patient group was 12.8 (11.9–13.8), 11.0 (10.4–11.6),
140	and 8.4 (8.0-8.8), respectively, for the three levels of injury severity, and the OR in patients with
141	ISS ≥ 16 or ISS ≥ 18 was higher than that in patients group ISS ≥ 26 .
142	
143	

of 16					BMJ Open			s/bmjopen- by copyri			
144 ′	Table 1. Characteristics by the	nine age gro	ups and thr	ee levels of ir	ijury severity	groups.		-2022-0626 [.] ght, includi			
_	Variables	Overall	Age 0-4	Age 5-14	Age 15-24	Age 25-34	Age 35-44	ng Age 4 5-54	Age 55-64	Age 65–74	Age≥
-		n = 117,199	n = 1095	n = 4079	n = 10,743	n = 7919	n = 9952		n = 13,931	n = 20,044	n = 36,
	Age, years	64 (41–78)	2 (1-3)	10 (7–12)	20 (17–22)	29 (27–32)	40 (38–42)	6 1 9 (407–52)	60 (57–62)	69 (67–72)	83 (79
	Male	16,317 (44)	675 (62)	2985 (73)	8095 (75)	6008 (75)	7710 (77)		10017 (72)	12662 (63)	16317
	Mechanism of injury							202 smus			
	Blunt	113,435 (97)	1073 (98)	4020 (99)	10,477 (98)	7508 (95)	9361 (94)	text 1 1 1 1 1 1 1 1	13,383 (96)	19,433 (97)	36,705
	Injury region							wnlc esch and o			
	Head injury with AIS \geq 3	36,244 (31)	439 (40)	1213 (30)	2798 (26)	1933 (24)	2527 (25)	data 3363 @28)	4451 (32)	7384 (37)	12,136
	Facial injury with AIS \geq 3	940 (0.8)	4 (0.4)	33 (0.8)	150 (1.4)	109 (1.4)	128 (1.3)	nini 24 g .0)	123 (0.9)	133 (0.7)	136 (0
	Neck injury with AIS \geq 3	478 (0.4)	6 (0.6)	2 (0.1)	27 (0.3)	39 (0.5)	55 (0.6)	ig, n ≱0 (∰)	77 (0.6)	110 (0.6)	92 (0.3
	Chest injury with AIS \geq 3	25,723 (22)	148 (14)	622 (15)	2831 (26)	2110 (27)	2759 (28)	485929)	3726 (27)	4594 (23)	5448 (
	Abdominal and pelvic injury with AIS \geq 3	5407 (5)	27 (2)	185 (5)	805 (7)	591 (7)	682 (7)	njo g (709 g)	684 (5)	831 (4)	893 (2
	Spinal injury with AIS \geq 3	13,146 (10)	12 (1)	128 (3)	861 (8)	788 (10)	1120 (11)	and 530 13)	2106 (15)	3053 (15)	3548 (
	Upper extremity injury with AIS \geq 3	6562 (6)	57 (5)	590 (14)	581 (5)	522 (7)	711 (7)		798 (6)	1026 (5)	1428 (
	Lower extremity injury with AIS \geq 3	31,526 (27)	124 (11)	634 (16)	2143 (20)	1660 (21)	2055 (21)	ar 10 10 10 10 10	2691 (19)	4358 (22)	15,457
	Iniury Severity Score	10 (9–19)	9 (4–16)	9 (5–16)	10 (5-19)	10 (6-20)	13 (9–20)	chng 3 (9521)	14 (9–21)	14 (9–21)	9 (9–1
	Actual in-hospital mortality	7201 (6.1)	23 (2.1)	48 (1.2)	354 (3.3)	310 (3.9)	372 (3.7)	log 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	762 (5.5)	1438 (7.2)	3361 (
=	Injury Severity Score ≥ 16	48,028 (41)	376 (34)	1166 (29)	3878 (36)	3043 (38)	4076 (41)	5297(43)	6541 (47)	9711 (48)	13,940
	Injury Severity Score ≥ 18	32,225 (28)	187 (17)	747 (18)	2954 (28)	2305 (29)	2985 (30)	3793 8 31)	4372 (31)	6256 (31)	8626 (
	Injury Severity Score ≥ 26	15,343 (13)	62 (6)	367 (9)	1595 (15)	1129 (14)	1481 (15)	1823 5 15)	2038 (15)	2910 (15)	3938 (

1 490 0 01 10	Page	8	of	16
---------------	------	---	----	----

								BMJ O	pen			6/bmjopen 1 by copyri				Pa	
146	Table 2.	. In-hosp	ital morta	lity and ode	ds ratio f	or mortal	ity of patie	nt groups	with ISS	≥ 16, ISS ≥	: 18, and I	-2022-06窝∳ ght, incl∰di					
			Overall			Age 0–4			Age 5-14			ng fore 1523 Fe			Age 25–34		
		No. of patients	Mortality, % (n)	OR (95%CI)	No. of patients	Mortality, % (n)	OR (95%CI)	No. of patients	Mortality, % (n)	OR (95%CI)	No. of patients	bruary 2023 Enasmus related to t	OR (95%CI)	No. of patients	Mortality, % (n)	OR (95%CI)	
	ISS ≥ 16	48,028	13.3 (6383)	12.8 (11.9–13.8)	376	5.9 (22)	44.6 (6.0–332.4)	1166	4.0 (46)	59.8 (14.5–246.7)	3878	Download hogeschool ext and ata ⁸ (3ata	34.1 (21.4–54.2)	3043	9.8 (299)	48.2 (26.4–88.1)	
	ISS ≥ 18	32,225	17.4 (5602)	11.0 (10.4–11.6)	187	11.2 (21)	57.3 (13.3–246.7)	747	5.8 (43)	40.6 (16.0–103.0)	2954	nings) Al	33.1 (22.6–48.5)	2305	12.2 (280)	25.7 (17.6–37.6)	
	ISS ≥ 26	15,343	23.5 (3605)	8.4 (8.0–8.8)	62	17.7 (11)	18.4 (7.7–43.6)	367	10.9 (40)	56.6 (26.3–122.0)	1595	train (2) an	17.9 (14.1–22.8)	1129	19.9 (225)	19.6 (15.2–25.4)	
147 148 149 150 151 152 153 154 155					1					(20/	.bmj.com/ on June 1, 2025 at Department G nd similar technologies.					
					For pe	eer review (only - http://l	bmjopen.k	omj.com/si	te/about/gui	delines.xht	3EZ-LTA ml				7	

Page	9 of 16								BMJ Open			1 by сору	6/bmjope				
1 2 3 4	156		n-2022-06261 rright, includi														
5 6 7 8 9 10 11			Age 35–44		Age 45-54				Age 55–64			Age 65-74	19 on <u>2</u> 3 Fe	Age ≥ 75			
		No. of patients	Mortality, % (n)	OR (95%CI)	No. of patients	Mortality, % (n)	OR (95%CI)	No. of patients	Mortality, % (n)	OR (95%CI)	No. of patients	Mortalited to % (n)	brua OR (95%CI)	No. of patients	Mortality, % (n)	OR (95%CI)	
12 13 14 15		4076	8.7 (353)	29.2 (18.4–46.5)	5297	9.3 (492)	17.1 (12.4–23.6)	6541	10.8 (707)	16.2 (12.3–21.3)	9711	13.6 text and d (1317) d	D13.2 (11.0–16.0)	13940	20.2 (2812)	10.5 (9.5–11.5)	
16 17 18 19		2985	11.2 (335)	23.7 (16.8–33.4)	3793	11.7 (442)	12.0 (9.6–15.1)	4372	14.4 (629)	11.9 (9.8–14.4)	6256	18.6 mining	ad 11.2 (9.8–12.9)	8626	27.4 (2364)	10.5 (9.7–11.3)	
20 21 22 23	157 158	1481	18.2 (270)	18.3 (14.5–23.2)	1823	17.7 (322)	10.3 (8.6–12.4)	2038	20.9 (426)	9.1 (7.8–10.6)	2910	24.6 AI trainin (716) n	7.4 (6.6–8.3)	3938	34.0 (1338)	8.0 (7.3–8.6)	
24 25 26		ISS, Inju	ıry Severity	Score; OR,	odds ratio	o; CI, confid	ence interv	al.		h	0	, and simil	pen.bmj.co	1			
28 29 30												ar technol	m/ on Jun				
32 33 34												ogies.	e 1, 2025 a				
35 36 37 38													t Departme				
39 40 41													ent GEZ-L				
43 44 45						For peer re	eview only - I	http://bmj	open.bmj.cc	om/site/abou	t/guidelin	es.xhtml	ΓA			8	

4. DISCUSSION

To the best of our knowledge, this is the first nationwide study in Japan to evaluate in-hospital mortality and OR for mortality in patients with severe injury according to age. Our study showed that in all three groups with ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 , which are the commonly used anatomical injury definitions, in-hospital mortality for patients aged < 55 years was between 4.0% and 17.7% for each level of injury severity. Moreover, after evaluating the validity of the definition for severely injured patients in a Japanese cohort via the detailed classification of the definition cutoff values and age groups, there was no acceptable definition, with not only a high in-hospital

mortality but also a high OR for mortality for all age groups.

Previous studies demonstrated that in 1990 when severe injury was defined as an ISS cutoff of ≥ 16

points, the mortality of patients with an ISS ≥ 16 was more than 20%; however, the mortality of

these patients decreased; therefore, an ISS cutoff of ≥ 18 or 26 might be suitable for defining

severely injured patients with a high mortality rate.[1–3,8] This study also showed that patients with

ISS \geq 26 had the highest in-hospital mortality in all age categories. However, the OR for mortality in

patients with ISS ≥ 26 was lower than that in patients with ISS ≥ 16 and ISS ≥ 18 . There are possible

explanations for the lack of an accepted definition with a high in-hospital mortality and high OR for mortality in a Japanese cohort.

First, there are differences in the study era and/or cohorts at the time of development.[1] A previous

10-year nationwide study using the JTDB dataset from 2004 to 2013 demonstrated that the in-hospital mortality of patients with ISS ≥ 16 decreased from 28.5% to 15.7% due to improvements in trauma care and medical ambulance services.[9] Moreover, in the Japanese cohort, unlike the aging population in the rest of the world, the characteristics and survival outcome of severely injured patients varied widely according to age, and the mortality risk of elderly patients with severe injury was higher than that of the other age groups.[12] A previous Japanese nationwide study showed that the incidence rate of severe traumatic brain injury among severely injured patients aged > 65 years was high (40.7%).[13] Moreover, the in-hospital mortality of these patients was higher than that of the other age-groups.[13] These results suggest that the elderly patient groups had a higher mortality because of the high proportion and mortality of severe traumatic head injury. This study also showed that the prevalence and in-hospital mortality of severely injured patients aged 55–64, 65– 75, and \geq 75 years increased stepwise. On the other hand, previous studies suggested that the ISS cutoff of ≥ 16 in adult patients was equivalent to a cut-off ≥ 26 in pediatric patients aged ≤ 16 years.[14,15] This study showed different results from those of a previous study [15], wherein the in-hospital mortality of pediatric patients aged 0–4 years with an ISS \geq 26 was high (17.7%) and that of pediatric patients aged 5–14 years with an ISS \geq 26 was low (10.9%), as shown in Table 2. Moreover, a previous study showed that there was a difference in the optimal cut off value of ISS in predicting severely injury mortality risk by region and/or mechanism of injury among pediatric patients. Therefore, it is important to develop an acceptable definition of severe injury by considering the age-related characteristics and mortality risks in a Japanese cohort. Moreover, this study showed that the mortality rate and mortality risk of injured patients in Japan differed by age groups and did not have a linear correlation with age in years. For a better predictive accuracy in mortality, it may be effective to add age categories as a predictive variable for mortality and to

calculate the coefficient for coded value according to mortality risk by each age group, as shown in the Trauma and injury Severity Score methodology [16]. Second, there was a limitation in evaluating only anatomical severity as a definition of severe injury. A more recent approach suggests that the addition of other physiological variables to the anatomical severity score has the advantage of identifying severely injured patients with a high mortality risk. [2,17,18] Although the mortality of patients with ISS ≥ 16 was 18.7%, that of patients with ISS ≥ 16 in addition to one other physiological parameter increased from 35% to 38%.[2] Moreover, patients with an increasing number of the physiological variable, such as the Glasgow coma scale, hypotension, and laboratory values (e.g., acidosis and/or coagulopathy), may have an increased risk of mortality.[17–19] However, we could not evaluate the variables according to physiological parameters and findings of blood tests. Therefore, it seems important to evaluate these parameters together with the anatomical severity used in this study to develop a well-validated definition of severely injured patients. Our study had some limitations. First, there was selection bias because not all Japanese hospitals that treat severely injured patients are registered in the JTDB. The 280 tertiary centers equivalent to Level I trauma centers in the United States participated, including 92% of the Japanese government-approved tertiary emergency medical centers in March 2019. Therefore, the JTDB is not a population-based sample of injured patients and the data are registered voluntarily. Moreover, the JTDB dataset has missing data, especially for pediatric patients.[20] The number of pediatric

patients were lower than that of adult patients. Therefore, missing data may have a more significant influence on the analysis of the pediatric patients' data than that of the adult patients' data. A highquality Japanese nationwide dataset with less missing data should be constructed to improve the accuracy of predicting the survival of injured patients in the data analysis for all age categories. Second, because the number of patients aged 0-4 and 5-14 years was small (0.9% and 3.5% of all the patients, respectively), it is possible that the ORs of these patient groups with small sample sizes were overestimated. In addition, the number of participating hospitals differed across the study period. Furthermore, the JTDB used AIS 90 until 2018 and is now using the AIS 2005 updated 2008 coding scale. Similar studies need to be conducted using the newest measure to verify our results.

5. CONCLUSIONS

This is the first nationwide study in Japan to evaluate the prevalence, in-hospital mortality, and OR for mortality in patients with severe injury according to age categories. This study showed that there were differences in in-hospital mortality rate and risk among Japanese injured patients by age and anatomical severity; therefore, the use of correlation between mortality and injury severity score such as the ISS may be hardly justified in the definition of severely injured patients in all age categories. In the future, it will be important to evaluate the other parameters such as age, physiological variables, and laboratory variables together with the anatomical severity by using the population-based database to develop a well-validated definition of severely injured patients.

1 2		
3	240	Author Contributions: Conceptualization, CT and TM; methodology, CT; software, CT and TA;
4 5	241	validation, CT, TM, TA, MG, and MS; formal analysis, CT; investigation, CT, TM, MS, MG, and TA;
6	242	resources, CT and TA; data curation, CT and TA; writing—original draft preparation, CT; writing—
7 o	243	review and editing, CT, TM, MS, MG, TA, and IT; visualization, CT; supervision, IT; project
9	244	administration and funding acquisition. CT All authors have read and agreed to the published version of
10	245	the manuscrint
11	245	Funding: CT received a grant from the General Insurance Association of Japan [21-08]
13 14	240	Ethical Approval Statement: This study was approved by the institutional athies committees of
15	247	Valacheme City University Madical Contra (connected by D170000002)
16 17	248	Y okonama City University Medical Centre (approval no. B1/0900003).
18	249	Informed Consent Statement: The requirement for informed consent from the patients was waived due
19	250	to the observational nature of the study design.
20 21	251	Data Availability Statement: The approving authority for data access was the Japanese Association for
22	251	the Summer of Transmer (Transmer Devictor Computition)
23 24	252	the Surgery of Trauma (Trauma Registry Committee).
25	253	Acknowledgments: None.
26	254	Conflicts of Interest . The authors declare no conflict of interest
27 28	234	connets of interest. The autions decide no connet of interest.
29	255	
30 31		
32		
33		
34 35		
36		
37		
39		
40		
41 42		
43		
44 45		
45 46		
47		
48 49		
50		
51 52		
53		
54		
55 56		
57		
58 59		
60		

2						
3 4	256	Ref	reences			
5	257	1	Champion HR, Copes WS, Sacco WJ et al. The major trauma outcome study: Establishing national			
6 7	258		norms for trauma care. J Trauma 1990;30:1356-65. DOI:10.1097/00005373-199011000-00008.			
8	259	2	Butcher N, Balogh ZJ. The definition of polytrauma: The need for international consensus. Injury			
9 10	260		2009 ;40;Supplement 4:S12–22. DOI:10.1016/j.injury.2009.10.032.			
11 12	261	3	Butcher N, Balogh ZJ. AIS > 2 in at least two body regions: A potential new anatomical definition			
12	262		of polytrauma. Injury 2012;43:196–9. DOI:10.1016/j.injury.2011.06.029.			
14 15	263	4	Rosoff L, Berne CJ. Management of acute hemodynamic and respiratory disturbances in the			
16	264		severely injured patient. Surg Clin North Am 1968;48:1187-96. DOI:10.1016/s0039-			
17 18	265		6109(16)38679-0.			
19	266	5	Mahoney JW. Evaluation and diagnosis in the multiply injured patient. Clin Orthop Relat Res			
20 21	267		1968 ;60:227–30. DOI:10.1097/00003086-196809000-00029.			
22	268	6	Baker SP, O'Neill B, Haddon W Jr. et al. The injury severity score: A method for describing			
23 24	269		patients with multiple injuries and evaluating emergency care. J Trauma 1974;14:187-96.			
25	270		DOI:10.1097/00005373-197403000-00001.			
26 27	271	7	Association for the Advancement of Automotive Medicine. The abbreviated injury scale. Revision			
28	272		updated 1998. https://www.tarn.ac.uk/content/downloads/72/coding.pdf 1990.			
29 30	273	8	Wong TH, Lumsdaine W, Hardy BM et al. The impact of specialist Trauma Service on Major			
31	274		Trauma Mortality. J Trauma Acute Care Surg 2013;74:780–4.			
32 33	275		DOI:10.1097/TA.0b013e3182826d5f.			
34	276	9	Nagata I, Abe T, Uchida M et al. Ten-year inhospital Mortality trends for patients with trauma in			
35 36	277		Japan: A multicentre observational study. BMJ Open 2018;8:e018635. DOI:10.1136/bmjopen-			
37	278		2017-018635.			
38 39	279	10	Hondo K, Shiraishi A, Fujie S et al. In-hospital trauma mortality has decreased in Japan possibly			
40	280		due to trauma education. J Am Coll Surg 2013;217:850–7.e1.			
41 42	281		DOI:10.1016/j.jamcollsurg.2013.05.026.			
43	282	11	Toida C, Muguruma T, Gakumazawa M et al. Ten-year in-hospital mortality trends among			
44 45	283		paediatric injured patients in Japan: A nationwide observational study. J Clin Med 2020;9:3273.			
46	284		DOI:10.3390/jcm9103273.			
47 48	285	12	Kojima M, Endo A, Shiraishi A et al. Age-related characteristics and outcomes for patients with			
49 50	286		severe trauma: Analysis of Japan's nationwide trauma registry. Ann Emerg Med 2019;73:281-90.			
50 51	287		DOI:10.1016/j.annemergmed.2018.09.034.			
52	288	13	Toida C, Muguruma T, Gakumazawa M et al. Age- and Severity-Related In-Hospital Mortality			
53 54	289		Trends and Risks of Severe Traumatic Brain Injury in Japan: A Nationwide 10-Year Retrospective			
55 56	290		Study. J Clin Med 2021;10:1072. DOI:10.3390/jcm10051072.			
56 57	291	14	Keskey EC, Hampton DA, Bierman H et al. Novel trauma composite score in a more reliable			
58 50	292		predicator of mortality than injury severity score in pediatric trauma. J Trauma Acute Care Surg			
60	293		2021 ;19:599–604.			
	294					

2		
3	295	15 Brown JB, Gestring ML. Leeper CM, et al. The value of the injury severity score in pediatric
4 5	296	trauma: Time for a new definition of severe injury. J Trauma Acute Care Surg 2017;82:995-1001.
6	297	16 Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma score and
7 8	298	the injury severity score. J Trauma 1987;27:370-8.
9	299	17 Pape HC, Lefering R, Butcher N; et al. The definition of polytrauma revisited: An international
10 11	300	consensus process and proposal of the new 'Berlin definition'. J Trauma Acute Care Surg
12	301	2014 ;77:780–6. DOI:10.1097/TA.00000000000453.
13 14	302	18 Driessen MLS, Sturms LM, van Zwet EW; et al. Evaluation of the Berlin polytrauma definition: A
15	303	Dutch nationwide observational study. J Trauma Acute Care Surg 2021;90:694–9.
16 17	304	DOI:10.1097/TA.000000000000000000000000000000000000
18	305	19 Brockamp T, Maegele M, Gaarder C; et al. Comparison of the predictive performance of the BIG,
19 20	306	TRISS, and PS09 score in an adult trauma population derived from multiple international trauma
20	307	registries. Crit Care 2013;17:R134. DOI:10.1186/cc12813.
22 23	308	20 Toida C, Muguruma T, Gakumazawa M et al. Validation of age-specific survival prediction in
24	309	pediatric patients with blunt trauma using trauma and injury severity score methodology: A ten-year
25 26	310	nationwide observational study. <i>BMC Emerg Med</i> 2020 ;20:91. DOI:10.1186/s12873-020-00385-0.
27	311	
28 29	312	
30	313	
31 32	314	Figure Legend
33	315	Figure 1. Flow diagram of the patient selection process.
34 35	316	JTDB, Japanese Trauma Data Bank.
36		
37 38		
39		
40 41		
42		
43 44		
45		
46		
47 49		
40 49		
50		
51		
52		
53 54		
55		
56		
57		
58 59		
60		

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1,2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	2,3
		reported	0.0
Objectives	3	State specific objectives, including any prespecified hypotheses	2,3
Methods			
Study design	4	Present key elements of study design early in the paper	2
Setting	5	Describe the setting, locations, and relevant dates, including periods of	3,4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	3,4
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	N/A
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4,5
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4,5
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	3,4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	4,5
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	4,5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	4,5
		(c) Explain how missing data were addressed	3,4
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(<u>e</u>) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	5
		eligible, examined for eligibility, confirmed eligible, included in the study.	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	3,4,5
		(c) Consider use of a flow diagram	5
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical social)	3,4,5
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	3
		(c) Summarise follow-un time (eg. average and total amount)	3
Outcome data	15*	Report numbers of outcome events or summary measures over time	5
Outcome uata	13.	report numbers of outcome events of summary measures over time	

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	5
		(b) Report category boundaries when continuous variables were categorized	5,6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	5,7,8
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	5,7,8
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	10
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	9,10
Other informati	on		-
Funding	22	Give the source of funding and the role of the funders for the present study and, if	10
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Evaluating the definition of Severely Injured Patients: A Japanese Nationwide 5-Year Retrospective Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062619.R2
Article Type:	Original research
Date Submitted by the Author:	23-Dec-2022
Complete List of Authors:	Toida, Chiaki; Teikyo University School of Medicine Graduate School of Medicine, Department of Emergency Medicine; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Muguruma, Takashi; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Gakumazawa, Masayasu; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Graduate School of Medicine, Department of Emergency Medicine Graduate School of Medicine, Department of Emergency Medicine Shinohara, Mafumi; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Abe, Takeru; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine Takeuchi, Ichiro; Yokohama City University School of Medicine Graduate School of Medicine, Department of Emergency Medicine
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Medical management, Epidemiology
Keywords:	TRAUMA MANAGEMENT, EPIDEMIOLOGY, INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

r	
2	
3	
4	
-	
5	
6	
7	
,	
8	
9	
10	
10	
11	
12	
12	
15	
14	
15	
16	
10	
17	
18	
10	
17	
20	
21	
 วา	
22	
23	
24	
25	
25	
26	
27	
20	
28	
29	
30	
21	
31	
32	
22	
22	
34	
35	
36	
50	
37	
38	
20	
59	
40	
41	
<u>4</u> 2	
-τ∠ 42	
43	
44	
45	
46	
47	
<u>4</u> 8	
40	
49	
50	
51	
51	
52	
53	
51	
J4 	
55	
56	
67	
57	
57 58	

60

1

1	Article
2	Evaluating the definition of Severely Injured Patients: A
3	Japanese Nationwide 5-Year Retrospective Study
4	Chiaki Toida ^{1,2} *, Takashi Muguruma ² , Masayasu Gakumazawa ² , Mafumi Shinohara ² ,
5	Takeru Abe ² , Ichiro Takeuchi ²
6	1 Department of Emergency Medicine, Teikyo University School of Medicine Graduate School
7	of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8606, Japan; toida-ygc@umin.ac.jp
8	2 Department of Emergency Medicine, Yokohama City University Graduate School of Medicine,
9	4-57 Urafunecho, Minami-ku, Yokohama 232-0024, Japan; mgrmtks@gmail.com (T.M.);
10	gakumazawa-tuk@umin.ac.jp (M.G.); s_mafumi@yokohama-cu.ac.jp (M.S.);
11	abet@yokohama-cu.ac.jp (T.A.); takeqq@yokohama-cu.ac.jp (I.T.)
12	* Correspondence: toida-ygc@umin.ac.jp; Tel: +81-3-3815-5411
13	Received: date; Accepted: date; Published: date
14	
15	Word count: 2320
16	

on Injury his study y in 1 280 included sician. . for
on Injury his study y in 1 280 included sician.
Injury his study y in 1 280 included sician.
his study y in 1 280 included sician. . for
y in 1 280 included sician.
1 280 included sician. . for
included sician.
included sician.
included sician.
includec sician.
sician. for
for
100-10
, ISS≥18
atients
er, in-
roups, the
ospital
nortality
al
o age.
h not onl
h not onl
h not onl ias.
r -

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

49 1. INTRODUCTION

The terminology used to quantify anatomical injury severity has been vaguely described for many decades using various phrases, such as severely injured and major trauma.[1–5] Although the most widely used definitions continue to rely on patients who have a high mortality and morbidity risk and require intense medical resources, such as massive resuscitation, multiple surgical operations, intensive care, and complex rehabilitation programs,[4,5] the definition lacks a universal consensus with quantitative measures.[2,3]

The most widely used definition of severely injured patients is the Injury Severity Score (ISS),[6] which is calculated using the Abbreviated Injury Scale (AIS).[7] Thirty years ago, an ISS cutoff value of \geq 16 was defined as "severely injured" because patients with an ISS \geq 16 had an expected mortality rate of \geq 20%.[1] However, the mortality of patients with an ISS \geq 16 and ISS \geq 26 decreased from 12.4% to 9.3% and from 25.4% to 20.3%, respectively, during the 10-year study period, due to a reduction in mortality and/or morbidity associated with organized trauma systems.[8]

Research based on the Japanese nationwide trauma registry has also shown that the in-hospital mortality trend has decreased in injured patients.[9–11] Moreover, there are more age-related differences in the mortality of severely injured patients in Japan than that in the other developed countries because Japan has faced issues with the declining birth rate and aging population.[11,12] To date, no study has evaluated the validity of the definition of severe injury in a Japanese cohort using a detailed classification of the definition cutoff values and age groups. We hypothesized that there would be differences in in-hospital mortality rate and risk among Japanese injured patients by age and anatomical injury severity. Therefore, this study aimed to compare the prevalence, in-hospital mortality, and odds ratio (OR) for mortality in patients with an ISS ≥ 16 , ISS ≥ 18 , and ISS \geq 26 as the commonly used anatomical injury definitions by age group [2].

74 2. MATERIALS AND METHODS

2.1. Study setting and population

This retrospective observational nationwide study was conducted based on data obtained from
the Japan Trauma Data Bank (JTDB), which registers data of patients with an injury and/or burn,

BMJ Open

78	and records prehospitalization- and hospital-related information. The JTDB includes data on
79	demographic characteristics, comorbidities, injury types, mechanism of injury, means of
80	transportation, vital signs, AIS score, prehospital/in-hospital procedures, injury diagnosis as
81	indicated by the AIS, and clinical outcomes. In most cases, physicians trained in AIS coding record
82	the online registration of individual patient data. There were 280 participating hospitals in all 47
83	prefectures in Japan, including 92% of the Japanese government-approved tertiary emergency
84	medical centers in March 2019. The Japan Association for the Surgery of Trauma permits open
85	access and updating of existing medical information, and the Japan Correlation for Acute Medicine
86	evaluates the submitted data.
87	In this study, we used the JTDB dataset that included information from January 1, 2014 to
88	December 31, 2018, which initially yielded the data of 181,971 patients. The inclusion criterion for
89	this study was injured patients who were transferred from the scene of injury by ambulance and/or
90	physician. Patients with cardiac arrest on hospital arrival or with missing key data, such as
91	mechanism, age, ISS, and/or survival outcome, were excluded from this study. Figure 1 presents a
92	flow diagram of the patient selection process in this study.
93	
94	2.2. Data collection
95	We collected information from the JTDB, including the following variables: demographic
96	characteristics (age [years], sex, injury mechanism, transportation type, and transfer process) and
97	clinical parameters (AIS of the injured region and ISS). In the JTDB, a patient with an AIS of the
98	injured region ≥ 3 was defined as a case of a severely injured region.
99	
100	2.3. Ethics statement
101	This study was approved by the bognital othics committee of Velschame City University
101	Madical Cantar (compared by D170000002) The compared activity for data cancer and ind here
102	Medical Center (approval no. B170900003). The approval authority for data access was provided by
103	the Japanese Association for the Surgery of Trauma (Trauma Registry Committee). The
104	requirement for informed consent from the patients was waived owing to the observational nature of
105	the study.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

106	
107	2.4. Statistical analysis
108	The outcomes were as follows: prevalence, in-hospital mortality, and OR for mortality with
109	respect to age group (0-4, 5-14, 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, and ≥75 years) and
110	injury severity (ISS \geq 16, ISS \geq 18, and ISS \geq 26); the ISSs of these groups were used as the
111	definitions of anatomical injury in a previous review article.[2]
112	Continuous variables are presented as medians with interquartile range (IQR, Q1-Q3), and
113	categorical variables are presented as the number and percentage of patients. The Mann-Whitney U
114	test and Wilcoxon's rank-sum test were used to analyze continuous variables, whereas the chi-
115	square test was used to analyze categorical variables. OR (95% confidence intervals, CI) for
116	mortality was calculated using a logistic regression model. All statistical analyses were performed
117	using STATA/SE software (version 17.0; StataCorp; College Station, Texas, USA). Statistical
118	significance was defined as a two-tailed P-value of <0.05.
119	
120	2.5. Patient and public involvement
121	Patients and the public were not involved in the design, conduct, reporting, or dissemination of
122	this research. We will not directly disseminate our findings to involved participants. However, we
123	plan to disseminate them through the publication of an article.
124	
125	3. RESULTS
126	During the 5-year study period, we analyzed the data of 117,199 injured patients transferred
127	from the scene of injury; 113,435 (97%) of them had blunt trauma (Figure 1) (Table 1). The median
128	age and ISS score were 64 years (IQR, 41-78) and 10 (IQR, 9-19), respectively. The overall in-
129	hospital mortality rate was 6.1%.

BMJ Open

2	
3 4	130
5 6	131
7 8	132
9	
10 11	133
12 13	134
13 14 15	135
15	155
17 18	136
19	137
20 21	138
22 23	139
24	
25 26	140
27 28	141
29 30	142
31	
32 33	143
34 25	144
36	
37	
38	
39 40	
41	
42	
43 44	
45	
46	
47 48	
49	
50	
51 52	
52	
54	
55 56	
57	
58	
59 60	
~~	

Table 1 shows the characteristics by age group and injury severity group during the 5-year
study period. The number of patients with ISS ≥16, ISS ≥18, and ISS ≥26 was 48,028 (41% of all
the patients), 32,225 (28%), and 15,343 (13%), respectively.

Figure 2 shows in-hospital mortality and OR for mortality with respect to age group and injury severity. In all age categories, the in-hospital mortality of patients with ISS \geq 16, ISS \geq 18, and ISS \geq 26 was 13.3%, 17.4%, and 23.5%, respectively. In each age category, the in-hospital mortality for patients aged > 55 years was higher than that for younger age groups, and that of patients aged > 75 years was higher (by more than 20%) than that of all patient groups for each level of injury severity. In-hospital mortality for the 5–14 years age group was 4.0–10.9% and lower than that for the other age groups.

In all age categories, the OR for mortality by patient group was 12.8 (11.9–13.8), 11.0 (10.4– 11.6), and 8.4 (8.0–8.8), respectively, for the three levels of injury severity, and the OR in patients with ISS \geq 16 or ISS \geq 18 was higher than that in patients group ISS \geq 26.

Fable 1. Characteristics by the particular statements	nine age grou	ps and three	e levels of inju	ry severity gr	oups.	cludii)6261			
Variables	Overall	Age 0–4	Age 5-14	Age 15–24	Age 25–34	Age 35-44 of	S Age 45–54	Age 55–64	Age 65–74	Age
variables	n = 117,199	n = 1095	n = 4079	n = 10,743	n = 7919	n = 9952	$S_n = 12,188$	n = 13,931	n = 20,044	n = 3
Age, years	64 (41–78)	2 (1-3)	10 (7–12)	20 (17–22)	29 (27–32)	⁴⁰ (38–42) ö	eb ₄₉ (47–52)	60 (57–62)	69 (67–72)	83 (7
Male	73,680 (63)	675 (62)	2985 (73)	8095 (75)	6008 (75)	7710 (77) ateo	9211 (76)	10017 (72)	12662 (63)	1631
Mechanism of injury						tot	2023			
Blunt	113,435 (97)	1073 (98)	4020 (99)	10,477 (98)	7508 (95)	9361 (94)	0 11,475 (94)	13,383 (96)	19,433 (97)	36,70
Injury region						ind o	wnlo			
Head injury with AIS \geq 3	36,244 (31)	439 (40)	1213 (30)	2798 (26)	1933 (24)	2527 (25) ata	6 6 6 6 6 6 6 6 6 6	4451 (32)	7384 (37)	12,13
Facial injury with AIS \geq 3	940 (0.8)	4 (0.4)	33 (0.8)	150 (1.4)	109 (1.4)	128 (1.3) B	5 ¹²⁴ (1.0)	123 (0.9)	133 (0.7)	136 (
Neck injury with AIS \geq 3	478 (0.4)	6 (0.6)	2 (0.1)	27 (0.3)	39 (0.5)	55 (0.6) ng	B 1 ^{70 (0.6)}	77 (0.6)	110 (0.6)	92 (0
Chest injury with AIS \geq 3	25,723 (22)	148 (14)	622 (15)	2831 (26)	2110 (27)	2759 (28) L tra	3485 (29)	3726 (27)	4594 (23)	5448
Abdominal and pelvic injury with AIS \geq 3	5407 (5)	27 (2)	185 (5)	805 (7)	591 (7)	682 (7) inin	3 .709 (6)	684 (5)	831 (4)	893 (
Spinal injury with AIS \geq 3	13,146 (10)	12 (1)	128 (3)	861 (8)	788 (10)	بې 1120(11) م	9 1530 (13)	2106 (15)	3053 (15)	3548
Upper extremity injury with AIS \geq 3	6562 (6)	57 (5)	590 (14)	581 (5)	522 (7)	711 (7) S	849 (7)	798 (6)	1026 (5)	1428
Lower extremity injury with AIS \geq 3	31,526 (27)	124 (11)	634 (16)	2143 (20)	1660 (21)	2055 (21) nilar	6 2404 (20)	2691 (19)	4358 (22)	15,45
Injury Severity Score	10 (9–19)	9 (4–16)	9 (5–16)	10 (5–19)	10 (6–20)	13 (9–20) tec	9 13 (9–21)	14 (9–21)	14 (9–21)	9 (9–
Actual in-hospital mortality	7201 (6.1)	23 (2.1)	48 (1.2)	354 (3.3)	310 (3.9)	372 (3.7) no	5 33 (4.4)	762 (5.5)	1438 (7.2)	3361
Injury Severity Score ≥ 16	48,028 (41)	376 (34)	1166 (29)	3878 (36)	3043 (38)	4076 (41) G	, , 5297 (43)	6541 (47)	9711 (48)	13,94
Injury Severity Score ≥ 18	32,225 (28)	187 (17)	747 (18)	2954 (28)	2305 (29)	2985 (30)	62 63 793 (31)	4372 (31)	6256 (31)	8626
Injury Severity Score ≥ 26	15,343 (13)	62 (6)	367 (9)	1595 (15)	1129 (14)	1481 (15)	at D1823 (15)	2038 (15)	2910 (15)	3938

BMJ Open

4. DISCUSSION

To the best of our knowledge, this is the first nationwide study in Japan to evaluate in-hospital mortality and OR for mortality in patients with severe injury according to age. Our study showed that in all three groups with ISS ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 , which are the commonly used anatomical injury definitions, in-hospital mortality for patients aged < 55 years was between 4.0% and 17.7% for each level of injury severity. Moreover, after evaluating the validity of the definition for severely injured patients in a Japanese cohort via the detailed classification of the definition cutoff values and age groups, there was no acceptable definition, with not only a high in-hospital mortality, but also a high OR for mortality for all age groups.

Previous studies demonstrated that in 1990 when severe injury was defined as an ISS cutoff of \geq 16 points, the mortality of patients with an ISS \geq 16 was more than 20%; however, the mortality of these patients decreased; therefore, an ISS cutoff of ≥ 18 or 26 might be suitable for defining severely injured patients with a high mortality rate.[1–3,8] This study also showed that patients with ISS \geq 26 had the highest in-hospital mortality in all age categories. However, the OR for mortality in patients with ISS \geq 26 was lower than that in patients with ISS \geq 16 and ISS \geq 18. There are possible explanations for the lack of an accepted definition with a high in-hospital mortality and high OR for mortality in a Japanese cohort.

First, there are differences in the study era and/or cohorts at the time of development.[1] A previous 10-year nationwide study using the JTDB dataset from 2004 to 2013 demonstrated that the in-hospital mortality of patients with ISS ≥ 16 decreased from 28.5% to 15.7% owning to improvements in trauma care and medical ambulance services.[9] Moreover, in the Japanese cohort, unlike the aging population in the rest of the world, the characteristics and survival outcome of severely injured patients varied widely according to age, and the mortality risk of elderly patients with severe injury was higher than that of the other age groups.[12] A previous Japanese nationwide study showed that the incidence rate of severe traumatic brain injury among severely injured patients aged > 65 years was high (40.7%).[13] Moreover, the in-hospital mortality of these patients was higher than that of the other age groups.[13] These results suggest that the elderly patient groups had a higher mortality because of the high proportion and mortality of severe traumatic head injury. This study also showed that the prevalence and in-hospital mortality of severely injured

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

patients aged 55–64, 65–75, and \geq 75 years increased stepwise. On the other hand, previous studies suggested that the ISS cutoff of ≥ 16 in adult patients was equivalent to a cutoff of ≥ 26 in pediatric patients aged <16 years.[14,15] This study showed different results from those of a previous study [15], wherein the in-hospital mortality of pediatric patients aged 0–4 years with an ISS \geq 26 was high (17.7%) and that of pediatric patients aged 5–14 years with an ISS \geq 26 was low (10.9%), as shown in Figure 2. Moreover, a previous study showed that there was a difference in the optimal cut off value of ISS in predicting severely injury mortality risk by region and/or mechanism of injury among pediatric patients. Therefore, it is important to develop an acceptable definition of severe injury by considering the age-related characteristics and mortality risks in a Japanese cohort. Moreover, this study showed that the mortality rate and risk of injured patients in Japan differed by age groups and did not have a linear correlation with age in years. For a better predictive accuracy in mortality, it may be effective to add age categories as a predictive variable for mortality and to calculate the coefficient for coded value according to mortality risk by each age group, as shown in the Trauma and Injury Severity Score methodology [16]. Second, there was a limitation in evaluating only anatomical injury severity as a definition of severe injury. A more recent approach suggests that the addition of other physiological variables to the anatomical injury severity score has the advantage of identifying severely injured patients with a high mortality risk. [2,17,18] Although the mortality of patients with ISS ≥ 16 was 18.7%, that of patients with ISS ≥ 16 in addition to one other physiological parameter increased from 35% to 38%.[2] Moreover, patients with an increasing number of the physiological variable, such as the Glasgow Coma Scale, hypotension, and laboratory values (e.g., acidosis and/or coagulopathy), may have an increased risk of mortality.[17–19] However, we could not evaluate the variables according to physiological parameters and findings of blood tests. Therefore, it seems important to evaluate these parameters together with the anatomical injury severity used in this study to develop a well-validated definition of severely injured patients. Our study had some limitations. First, there was selection bias because not all Japanese hospitals that treat severely injured patients are registered in the JTDB. The 280 tertiary centers equivalent to Level I trauma centers in the United States participated, including 92% of the Japanese government-approved tertiary emergency medical centers in March 2019. Therefore, the JTDB is not a population-based sample of injured patients and the data are registered voluntarily.

Page 11 of 18

BMJ Open

Moreover, the JTDB dataset has missing data, especially for pediatric patients.[20] The number of pediatric patients were lower than that of adult patients. Therefore, missing data may have a more significant influence on the analysis of the pediatric patients' data than that of the adult patients' data. A high-quality Japanese nationwide dataset with less missing data should be constructed to improve the accuracy of predicting the survival of injured patients in the data analysis for all age categories. Second, because the number of patients aged 0-4 and 5-14 years was small (0.9% and 3.5% of all the patients, respectively), it is possible that the ORs of these patient groups with small sample sizes were overestimated. In addition, the number of participating hospitals differed across the study period. Furthermore, the JTDB used AIS 90 until 2018 and is now using the AIS 2005 updated 2008 coding scale. Similar studies need to be conducted using the newest measure to verify our results. Last, we did not evaluate which definition would be effective for each age group. A recent study showed significant discrepancies in the mortality risk of severely injured patients by each injury region.[21] We intend to calculate the coefficient for the coded value according to mortality risk by age group and injury region for a better mortality estimate.

5. CONCLUSIONS

This is the first nationwide study in Japan to evaluate the prevalence, in-hospital mortality, and OR for mortality in patients with severe injury according to age categories. This study showed that there were differences in in-hospital mortality rate and risk among Japanese injured patients by age and anatomical injury severity; therefore, the use of correlation between mortality and injury severity score, such as the ISS, may be hardly justified in the definition of severely injured patients in all age categories. In the future, it will be important to evaluate the other parameters, such as age, physiological variables, and laboratory variables, together with the anatomical injury severity by using the population-based database to develop a well-validated definition of severely injured patients.

Author Contributions: Conceptualization, CT and TM; methodology, CT; software, CT and TA;
validation, CT, TM, TA, MG, and MS; formal analysis, CT; investigation, CT, TM, MS, MG, and
TA; resources, CT and TA; data curation, CT and TA; writing—original draft preparation, CT;

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
2
3
4
5
6
7
/
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20 21
21
22
23
24
25
25
26
27
28
20
29
30
31
32
33
24
54
35
36
37
20
20
39
40
41
42
12
43
44
45
46
47
10
4ð
49
50
51
50
52
53
54
55
56
50
5/
58
59

1

235 writing—review and editing, CT, TM, MS, MG, TA, and IT; visualization, CT; supervision, IT;

236 project administration and funding acquisition, CT All authors have read and agreed to the

published version of the manuscript. 237

- Funding: CT received a grant from the General Insurance Association of Japan [21-08]. 238
- 239 Ethical Approval Statement: This study was approved by the institutional ethics committees of
- 240 Yokohama City University Medical Centre (approval no. B170900003).
- 241 Informed Consent Statement: The requirement for informed consent from the patients was
- 242 waived owning to the observational nature of the study design.
- 243 Data Availability Statement: No additional data available.
- Acknowledgments: None. 244
- Conflicts of Interest: The authors declare no conflict of interest. 245
- 246

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2											
3 4	247	References									
5 6	248	1	Champion HR, Copes WS, Sacco WJ, et al. The major trauma outcome study: Establishing								
7 8 9 10	249		national norms for trauma care. J Trauma 1990;30:1356-65. DOI:10.1097/00005373-								
	250		199011000-00008.								
11 12	251	2	Butcher N, Balogh ZJ. The definition of polytrauma: The need for international consensus.								
13 14 15	252		<i>Injury</i> 2009 ;40 Suppl 4:S12–22. DOI:10.1016/j.injury.2009.10.032.								
15 16 17	253	3	Butcher N, Balogh ZJ. AIS>2 in at least two body regions: A potential new anatomical								
17 18 10	254		definition of polytrauma. Injury 2012;43:196–9. DOI:10.1016/j.injury.2011.06.029.								
20 21	255	4	Rosoff L, Berne CJ. Management of acute hemodynamic and respiratory disturbances in the								
21 22 23	256		severely injured patient. Surg Clin North Am 1968;48:1187–96. DOI:10.1016/s0039-								
24 25	257		6109(16)38679-0.								
26 27	258	5	Mahoney JW. Evaluation and diagnosis in the multiply injured patient. Clin Orthop Relat Res								
28 29	259		1968 ;60:227–30. DOI:10.1097/00003086-196809000-00029.								
30 31 32 33 34 35 36 37 38 39	260	6	Baker SP, O'Neill B, Haddon W Jr, et al. The injury severity score: A method for describing								
	261		patients with multiple injuries and evaluating emergency care. J Trauma 1974;14:187–96.								
	262		DOI:10.1097/00005373-197403000-00001.								
	263	7	Association for the Advancement of Automotive Medicine. The abbreviated injury scale.								
	264		Revision updated 1998. https://www.tarn.ac.uk/content/downloads/72/coding.pdf 1990.								
40 41	265	8	Wong TH, Lumsdaine W, Hardy BM, et al. The impact of specialist trauma service on major								
42 43	266		trauma mortality. <i>J Trauma Acute Care Surg</i> 2013 ;74:780–4.								
44 45	267		DOI:10.1097/TA.0b013e3182826d5f.								
46 47	268	9	Nagata I, Abe T, Uchida M, et al. Ten-year inhospital Mortality trends for patients with trauma								
48 49	269		in Japan: A multicentre observational study. BMJ Open 2018;8:e018635.								
50 51	270		DOI:10.1136/bmjopen-2017-018635.								
52 53	271	10	Hondo K, Shiraishi A, Fujie S, et al. In-hospital trauma mortality has decreased in Japan								
54 55 56 57 58 59 60	272		possibly due to trauma education. J Am Coll Surg 2013;217:850–7.e1.								
	273		DOI:10.1016/j.jamcollsurg.2013.05.026.								

Page 14 of 18

BMJ Open

2			
3 4	274	11	Toida C, Muguruma T, Gakumazawa M, et al. Ten-year in-hospital mortality trends among
5 6	275		paediatric injured patients in Japan: A nationwide observational study. J Clin Med
7 8	276		2020 ;9:3273. DOI:10.3390/jcm9103273.
9 10	277	12	Kojima M, Endo A, Shiraishi A, et al. Age-related characteristics and outcomes for patients
11 12	278		with severe trauma: Analysis of Japan's nationwide trauma registry. Ann Emerg Med
13 14	279		2019;73:281-90. DOI:10.1016/j.annemergmed.2018.09.034.
15 16 17	280	13	Toida C, Muguruma T, Gakumazawa M, et al. Age- and severity-related in-hospital mortality
17 18	281		trends and risks of severe traumatic brain injury in Japan: A nationwide 10-year retrospective
19 20 21	282		study. J Clin Med 2021;10:1072. DOI:10.3390/jcm10051072.
21 22 22	283	14	Keskey RC, Hampton DA, Bierman H, et al. Novel trauma composite score in a more reliable
23 24 25	284		predicator of mortality than injury severity score in pediatric trauma. J Trauma Acute Care
25 26 27	285		Surg 2021;91:599–604. DOI:10.1097/TA.000000000003235.
28 29	286	15	Brown JB, Gestring ML, Leeper CM, et al. The value of the injury severity score in pediatric
30 31	287		trauma: Time for a new definition of severe injury. J Trauma Acute Care Surg 2017;82:995-
32 33	288		1001. DOI:10.1097/TA.000000000001440.
34 35	289	16	Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score
36 37	290		and the Injury Severity Score. J Trauma 1987;27:370-8.
38 39	291	17	Pape HC, Lefering R, Butcher N, et al. The definition of polytrauma revisited: An international
40 41	292		consensus process and proposal of the new 'Berlin definition'. J Trauma Acute Care Surg
42 43	293		2014 ;77:780–6. DOI:10.1097/TA.000000000000453.
44 45	294	18	Driessen MLS, Sturms LM, van Zwet EW, et al. Evaluation of the Berlin polytrauma definition:
46 47	295		A Dutch nationwide observational study. J Trauma Acute Care Surg 2021;90:694–9.
48 49	296		DOI:10.1097/TA.000000000000000000000000000000000000
50 51	297	19	Brockamp T, Maegele M, Gaarder C, et al. Comparison of the predictive performance of the
52 53 54 55	298		BIG, TRISS, and PS09 score in an adult trauma population derived from multiple international
	299		trauma registries. Crit Care 2013;17:R134. DOI:10.1186/cc12813.
56 57	300	20	Toida C, Muguruma T, Gakumazawa M, et al. Validation of age-specific survival prediction in
58 59 60	301		pediatric patients with blunt trauma using trauma and injury severity score methodology: A ten-

 BMJ Open

year nationwide observational study. BMC Emerg Med 2020;20:91. DOI:10.1186/s12873-020-00385-0. 21 Driessen MLS, de Jongh MAC, Sturms LM, et al. Severe isolated injuries have a high impact on resource use and mortality: a Dutch nationwide observational study. Eur J Trauma Emerg Surg 2022;48:4267-76. doi: 10.1007/s00068-022-01972-5. Figure Legends Figure 1. Flow diagram of the patient selection process. JTDB, Japanese Trauma Data Bank Figure 2. Association between odds ratio for in-hospital mortality and age groups by patients with Injury Severity Score (ISS) ≥16, ISS ≥18, and ISS ≥26. In a Japanese cohort, using the detailed definition cutoff values and age groups, there was no acceptable definition, with not only a high in-hospital mortality, but also a high odds ratio for mortality for all age groups.

Figure 1. Flow diagram of the patient selection process.

f 18		No. of patients	Mortality,%			BMJ Open	22-0		OR	95% CI
Overall	$\text{ISS} \geq 16$	48,028	13.3		-0-	-	626		12.8	(11.9, 13.8)
	$\mathrm{ISS} \geq 18$	32,225	17.4		-0		ing		11.0	(10.4, 11.6)
	$ISS \geq 26$	15,343	23.5	Ð			on 2		8.4	(8.4, 8.8)
Age 0-4	$\text{ISS} \geq 16$	376	5.9				use If		44.6	(6.0, 333.4)
	$\text{ISS} \geq 18$	187	11.2				s re	0	57.3	(13.3, 246.7)
	$ISS \geq 26$	62	17.7		0		late		18.4	(7.7, 43.6)
Age 5 – 14	$\text{ISS} \geq 16$	1166	4.0					0	59.8	(14.5, 246.7)
	$\text{ISS} \geq 18$	747	5.8				tex. σ		40.6	(16.0, 103.0)
	$\text{ISS} \geq 26$	367	10.9				t an	0	56.6	(26.3, 122.0)
Age 15 – 24	$\text{ISS} \geq 16$	3878	8.6				d choa		34.1	(21.4, 54.2)
	$\text{ISS} \geq 18$	2954	11.0			D	ol ed		33.1	(22.6, 48.5)
	$\text{ISS} \geq 26$	1595	16.1		D		nini		17.9	(14.1, 22.8)
Age 25 – 34	$\text{ISS} \geq 16$	3043	9.8						48.2	(26.4, 88.1)
	$\text{ISS} \geq 18$	2305	12.2			0	– Alt		25.7	(17.6, 37.6)
	$\text{ISS} \geq 26$	1129	19.9				//bm		19.6	(15.2, 25.4)
Age 35 – 44	$ISS \ge 16$	4076	8.7			0	ing, p		29.2	(18.4, 46.5)
	$\text{ISS} \geq 18$	2985	11.2				and and		23.7	(16.8, 33.4)
	$\text{ISS} \geq 26$	1481	18.2		0-		l sin		18.3	(14.5, 23.2)
Age 45 – 54	$\text{ISS} \ge 16$	5297	9.3		0		nilar		17.1	(12.4, 23.6)
	$\text{ISS} \geq 18$	3793	11.7				· tec		12.0	(9.6, 15.1)
	$ISS \geq 26$	1823	17.7	_	-0		Ju		10.3	(8.6, 12.4)
Age 55 – 64	$\text{ISS} \ge 16$	6541	10.8				ne 1		16.2	(12.3, 21.3)
	$\text{ISS} \geq 18$	4372	14.4				, 20 es.		11.9	(9.8, 14.4)
	$ISS \geq 26$	2038	20.9	-0	<u> </u>		25 a		9.1	(7.8, 10.6)
Age 65 – 74	$ISS \ge 16$	9711	13.6				D		13.2	(11.0, 16.0)
	$\text{ISS} \geq 18$	6256	18.6		-0		;par		11.2	(9.8 12.9)
	$ISS \ge 26$	2910	24.6	-8-			tme		7.4	(6.6, 8.3)
Age ≥ 75	$ISS \ge 16$	13,940	20.2	•••••	-0-		nt C		10.5	(9.5, 11.5)
	$\text{ISS} \geq 18$	8626	27.4		-0-		iEZ-		10.5	(9.7, 11.3)
	$ISS \ge 26$	3938	34.0				Ē		8.0	(7.3, 8.6)

40 Eigure 2. Association between odds ratio for in-hospital mortality and age groups by patients with Injury Severity Score (ISS) ≥ 16 , ISS ≥ 18 , and ISS ≥ 26 .

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1,2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	2,3
Objectives	3	State specific objectives, including any prespecified hypotheses	2,3
Methods			
Study design	4	Present key elements of study design early in the paper	2
Setting	5	Describe the setting, locations, and relevant dates, including periods of	3,4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	3,4
		(1) Describe methods of follow-up	N/A
		(b) For matched studies, give matching criteria and number of exposed and	11/7
Variables	7	Clearly define all autoemas announce mediators notantial confoundars and	4 5
variables	/	offeet modifiers. Give diagnostic griteria, if applicable	1,0
Data aguraga/	0*	Ear each variable of interest, give sources of data and datails of matheds of	4 5
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	1,0
measurement		there is more than one group	
Piec	0	Describe any efforts to address notential sources of bias	10
Dias Study size	9	Explain how the study size was arrived at	3.4
Ouentitative veriebles	10	Explain how the study size was arrived at	4.5
Qualititative variables	11	describe which groupings were aboven and why	.,.
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	4.5
Statistical methods	12	(a) Describe an statistical methods, metidding those used to control for	.,.
		(b) Describe any methods used to examine subgroups and interactions	4.5
		(a) Explain how missing date were addressed	3.4
		(c) Explain now missing data were addressed	N/A
		(a) It applicable, explain now loss to follow-up was addressed	N/A
		(<u>e</u>) Describe any sensitivity analyses	1.1/11
Results			5
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	3
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	245
		(b) Give reasons for non-participation at each stage	5,4,5
		(c) Consider use of a flow diagram	5
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	3,4,5
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	3
		(c) Summarise follow-up time (eg, average and total amount)	3
Outcome data	15*	Report numbers of outcome events or summary measures over time	5

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	5
		(b) Report category boundaries when continuous variables were categorized	5,6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	5,6,7
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	5,6,7
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	9,10
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	9,10
Other informati	on		·
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.