

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Seroprevalence and associated factors of maternal cytomegalovirus in Southern Ethiopia: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051390
Article Type:	Original research
Date Submitted by the Author:	18-Mar-2021
Complete List of Authors:	Hailemariam, Mesgistu; Hawassa University College of Medicine and Health Sciences, medical laboratory sciences; Ghent University Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences Mekonnen, Zeleke; Jimma University College of Public Health and Medical Sciences, School of Medical Laboratory Sciences; Loha, Eskindir; University of Bergen; Chr Michelson Institute Padalko, Elizaveta; Ghent University, Department of Diagnostic Sciences; Ghent University Hospital, Department of Diagnostic Sciences
Keywords:	OBSTETRICS, Diagnostic microbiology < INFECTIOUS DISEASES, Maternal medicine < OBSTETRICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez ony

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
2
1
4
5
6
7
,
8
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
∠ ı 22
22
23
24
25
25
20
27
28
29
30
50
31
32
33
31
24
35
36
37
38
20
39
40
41
42
12
4.5
44
45
46
47
40
48
49
50
51
51
52
53
54
55
55
50
57
58
59
60
00

1

associated factors Seroprevalence and of maternal 1 cytomegalovirus in Southern Ethiopia: a cross-sectional study 2 *Mengistu Hailemariam Zenebe^{1, 2, 3}, Zeleke Mekonnen², Eskindir Loha^{4, 5} and Elizaveta Padalko^{3,} 3 6 4 ¹School of Medical Laboratory Sciences, Hawassa University college of Medicine and Health 5 6 Sceinces, Hawassa, Ethiopia ² School of Medical Laboratory Sciences, Jimma University Institute of Health 7 Jimma University, Jimma, Ethiopia 8 ³ Department of Diagnostic Sciences, Ghent University, Ghent, Belgium 9 ⁴Centre for International Health, University of Bergen, Bergen, Norway 10 ⁵ Chr. Michelson Institute, Bergen, Norway 11 ⁶ Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium 12 13 *Corresponding author, mailing address: School of laboratory science Hawassa University 14 P.o.Box=1560. (+251913641103),Hawassa. Ethiopia, Phone: E-mail address: 15 mengamariam@yahoo.com or mengemariamzenebe@gmail.com 16 17 18

59

60

1 2		
2 3 4 5	19	Abstract
6 7	20	Objectives The aim of this study was to assess the seroprevalence and associated factors of CMV
8 9 10	21	among pregnant women in Southern Ethiopia.
11 12	22	Design Cross-sectional study.
13 14	23	Setting The study was conducted in Hawassa University comprehensive and specialized hospital.
15 16 17	24	Hawassa, Southern Ethiopia.
18 19	25	Participants A total of 600 consecutive pregnant women attending the delivery ward were
20 21	26	recruited for the study from August to October 2020.
22 23 24	27	Outcome measures The study assessed the rate of maternal anti-CMV IgG and IgM antibodies.
24 25 26	28	The association of obstetric history, sociodemographic and behavioural characteristics with
27 28	29	seropositivity of CMV was also evaluated based on the collected data using structured questioners.
29 30	30	Results Seropositivity for CMV IgM antibodies was 8.2% (49/600) (95% CI: 6 -10.5%), whereas
31 32 33	31	the CMV IgG was 88.6% (532/600), (95% CI: 89.5 - 94.0%). Seroprevalence was higher in women
34 35	32	of older age, currently unmarried and having nursery schooled children. Moreover, CMV
36 37 28	33	seropositivity was significantly associated with any of the detected curable STIs. Seroprevalence
30 39 40	34	was not significantly related to previous adverse pregnancy outcome, gravidity, being a child day
40 41 42	35	care occupant mother, and birth weight of the newborn.
43 44	36	Conclusion In the present study, we identified a high rate of CMV IgM seropositivity among
45 46	37	pregnant women in southern Ethiopia. Given that there is no existing CMV diagnosis, special
47 48 49	38	attention should be designed for pregnant women in parallel to the existing antenatal care facility.
50 51	39	Besides, training health care professionals will support awareness conception among pregnant
52 53	40	women concerning the sequels of CMV infection during pregnancy.
54 55 56	41	

2

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

42 43	Strengths and limitations of this study
44	• This study is the first to present the level of maternal cytomegalovirus infection in the
45	region besides there is scarce of investigation throughout the country. The assessed anti-
46	CMV IgM seropositivity also shown the possible threat of congenital CMV infection to
47	the developing fetus.
48	• The detected anti-CMV IgM seropositivity was expected to be infection during pregnancy
49	due to the fact that testing was conducted at the end of gestation (a nine month period).
50	However, the study was unable to distinguish primary to secondary (reinfection or
51	reactivation) as there was no base line data to decide about seroconversion.
52	• Being a hospital-based study, our finding will not be representative of all pregnant mothers
53	in the locality since a significant portion of mothers may not deliver in the hospital.
54	
55	
56	
57	
58	
59	
60	
61	
	3

62 Introduction

64 Cytomegalovirus (CMV) is the most common infection during pregnancy that poses the risk of 65 congenital CMV infections (cCMV) worldwide.(1) In immunocompetent hosts, primary CMV 66 infection may be asymptomatic or may cause mild self-limiting disease with fever, headaches, and 67 myalgia and after primary infection the virus remains latent. Latency following a primary infection 68 may relapse by periodic reactivations that give rise to recurrent infections later in life when the 69 body immunity is suppressed.(2)

CMV infection or reactivation during pregnancy is mostly asymptomatic, however may lead to fetal infection and cCMV syndromes.(3) Congenital CMV infection of the fetus of mothers having pre-existing anti-CMV antibodies is also possible due to risk of reactivation or reinfection with a different strain of CMV during pregnancy.(4) Therefore unlike previous perception the high maternal CMV seroprevalence in developing countries like Ethiopia does not eliminate the threat of cCMV infection of the newborn. Worldwide cCMV following nonprimary maternal infections is more common in individuals of lower socioeconomic background.(5)

So far studies have shown maternal seropositivity rates of previous infection ranging from low
(50 to 70%) in developed countries, to high (> 70%) in developing countries.(1) Presently, data on
the prevalence of maternal CMV and associated risk factors are scanty in Ethiopia. The only
available study conducted in Ethiopia had reported the prevalence of 15.5% for IgM and 88.6%
for CMV IgG.(6)

In Africa the highest prevalence of CMV IgG was estimated ranging from 72 – 97.5% (7, 8) and
of CMV IgM antibodies ranging from 0-15.5%.(9) However, for several reasons CMV infection
among pregnant women in Africa have been overlooked.(10) One of the main reasons for

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

inattention is the perception that being infected in early childhood endures immunity for subsequent infection, so maternal reactivation or reinfection during pregnancy is unlikely to cause severe congenital infection.(11) However, in pregnant women the immune system is somehow suppressed. So ignoring maternal CMV and the subsequent effect of cCMV infection in Africa is short-sighted; furthermore, the possible confounding effects of HIV infection, malnutrition, tuberculosis, and a general higher disease burden of the continent must be taken into account.(12)

The objective of the study was to assess the seroprevalence of CMV among pregnant women and determine associated factors in Southern Ethiopia. Information about maternal the prevalence of CMV and associated risk factors is almost absent in Ethiopia and this study was the first in the southern region. We hope the study will attract health care professional attention and improve antenatal care in this domain. In the meantime it will generate awareness to the community, mainly pregnant women, regarding the consequence of CMV during pregnancy in Ethiopia.

Methodology

Study design and setting

⁴ad From August to October 2020, a cross-sectional study was conducted among pregnant women who came for delivery in the obstetrics ward at Hawassa University Comprehensive and Specialized Hospital (HU-CSH), Ethiopia. The HU-CSH is one of the teaching hospitals serving as a referral centre for both public and private hospitals for more than 5 million inhabitants in the Southern Region and the neighbouring region of Ethiopia. The hospital has 500 beds, accommodating around 2,500 pregnant women for antenatal care (ANC) visits and conducting about 5,400 deliveries annually.

Participants

All pregnant women were recruited regardless of gestational age however, a mother with any critical illness (such as airway obstruction, current history of seizures or unconsciousness) that would deter them from participation in the study were excluded. Interrelated with the first phase of this project, where the initial 350 pregnant women had been tested for curable STI (C. trachomatis, N. gonorrhoeae and T. vaginalis) using GeneXpert (Xpert CT/NG and Xpert TV assays, Cepheid, Sunnyvale, California, USA), our manuscript being submitted and under review (manuscript number PONE-D-20-37668). In this second phase of the study, by including those initially enrolled 350 pregnant women, a total of 600 consecutively enrolled pregnant women were participated. A midwife at the obstetric ward provided general information about the study to all pregnant women before recruitment.

117 Sample size and sampling

The sample size was calculated based on the single population proportion formula by considering 15.5% prevalence of maternal anti-CMV IgM from a previous study conducted in central Ethiopia (6), a 3% margin of error and a 95% confidence level. Thus, the minimum sample size was 560. However, a total of 600 women were consecutively enrolled to signify the findings of seroprevalence of cytomegalovirus among pregnant women in the study settings. Sampling was based on convenience and continued until a total of 600 participants reached. If there is non-response during data collection, the study will be solved by taking subsequent participant until the intended sample size achieved.

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

126 Data collection

127 Socio-demographic, obstetric and behavioral data

Trained midwife at the obstetric ward provided general information about the study to pregnant women who came for delivery. Pregnant women agreeing to join in the study were interviewed using a structured questionnaire translated in Amharic, the language spoken by most people in the study area. The translated questionnaire was pre-tested on random mother at antenatal clinic to ensure the validity and feasibility of the questions as conducted in similar studies and principal investigator carefully checked the process of each data collection every day. Information related to socio-demographic characteristics (e.g., age, marital status, and educational level), obstetric history, and behavioral data were collected.

136 Sample collection and storage

The midwife-nurse aseptically collected a 3 ml blood sample from each subject. The collected samples were transported to the HU-CMHS microbiology laboratory within 12 hours of collection and the processed serums stored at -20 C^0 until analysis.

140 Laboratory methods

Testing was performed in Belgium, Ghent University hospital, department of laboratory medicine, using a commercially available enzyme immunoassay (ELISA) kit (EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany) for anti-CMV IgG and IgM according to the manufacturer's instructions. The sensitivity amounted to 99.2%, with a specificity of 100%. Results were evaluated semi-quantitatively by calculating a ratio of the extinction value of the patient sample over the extinction value of the calibrator optical density at 450 nm. Seropositivity

BMJ Open

was defined according to the guidelines given by the manufacturer, CMV negative when the ratio
cut off value was < 0.8, borderline between 0.8 and 1.1, and positive if >1.1 for both IgG and IgM.

149 Ethical considerations

Ethical approval from all of the appropriate institutional review boards was obtained. The ethics review committee of Hawassa University (CMHS/283/2012), Jimma University (IHRPGD/458/2020), National Health Research Ethics Review Committee (SRA/14.1/ 144483/2020) Ethiopia, and Ghent University (PA2019-038/BC-08458) Belgium, approved the study.

The study was conducted in accordance with the Declaration of Helsinki, the significance of the study was clarified to each study participant and parents of a few minorities before obtaining informed consent. Permission attained from the minor (under the age of 18 years) participants parent or legal guardian according to the Ethiopian national research Ethics review guideline. Eventually, consent was granted from each participant including those who were under the age of l8 years with a participant confirmatory agreement to participate in the study. Confidentiality of the participant's information was ensured by anonymous typing.

162 Data analysis

Descriptive statistics were used to characterize the socio-demographic and obstetric and medical characteristics of the participants. We evaluated the seroprevalence of CMV and associated factors using a logistic regression model. Bivariate comparisons using Chi-square or Fisher's exact test where suitable were used to examine the relationships between participant characteristics and CMV test result. Finally, multivariable logistic regression was used to identify characteristics

independently associated with sero-status of CMV and adjusting for other factors. Variables with a significant level of ≤ 0.2 were included in the final model. P value < 0.05 is considered statistically significant. SPSS software version 20.0 (SPSS Inc. Chicago, IL, USA) was used for all analyses.

171 Patient and public involvement

No patients or the public were directly involved in the design, conduct, reporting or disseminationplans of this research.

174 Results

Participants

Six hundred pregnant women were assessed for seroprevalence of CMV and all women met the inclusion criteria and enrolled in the study, generating a 100% response rate. The mean of maternal age was $27.0 \pm (SD)$ 5.2, with a ranging between 17 and 41. More than one-third of the study participant were under the age of 25. About one-fourth of the women were Primigravida. Out of the 600 participant 84 (14%) were currently unmarried, 475 (79.2%) were residing in urban setting, 377 (62%) were above or at secondary level of education. Forty-eight (8%) of the newborns were under-weighted (<2.5 Kg), and 64 (10%) of the births were preterm. Regarding STIs test result, 51 (14.6%) pregnant women were tested positive for any of curable STIs (Table 1).

In this study, around 96% of mothers had no knowledge of congenitally transmitted infection or
the associated risks in pregnancy and about 9% of them had previous adverse pregnancy outcome.
The chi- squire analysis shown that, seropositivity for CMV IgM significantly associated (p<0.05)
with marital status, gestational age, having nursery school baby in the household, sharing a cup
with children and having any of detected curable STIs. However, there was no significant

BMJ Open

association with birth weight, gravidity and having previous adverse pregnancy outcome i.e.

190 preterm birth, stillbirths and early neonatal death (Table 1).

Table 1 Maternal characteristics and associated factor with CMV IgM seropositivity in

192 Southern Ethiopia

Characteristics	Total (N=600)	IgM-Positive	IgM-Negative	p-value
	n (%)	(n=49) n (%)	(n=551) n (%)	
Age of mothers (years)				
<25	233 (38.8)	14 (28.6)	219 (39.7)	0.148
25-29	162 (27.0)	14 (28.6)	148 (26.9)	
30- 35	170 (28.3)	15 (30.6)	155 (28.1)	
>35	35 (5.8)	6(12.2)	29 (5.3)	
Marital status				
Married	516 (86.0)	37 (75.5)	479 (86.9)	
Currently unmarried	84 (14.0)	12 (24.5)	72 (13.1)	0.027
Residence		2		
Urban	475 (79.2)	44 (89.8)	431 (78.2)	0.056
Rural	125 (20.8)	5 (10.2)	120 (21.8)	
ANC follow up during pregnancy				
Yes	576 (96.0)	48 (98.0)	528 (95.8)	
no	24 (4.0)	1 (2.0)	23 (4.2)	0.712
Employed as daycare worker				
Yes	40 (6.7)	6 (12.2)	34 (6.2)	0.126
No	560 (93.3)	43 (87.8)	517 (93.8)	
Employed as health care				
Yes	32 (5.3)	6 (12.2)	26 (4.7)	0.055

no	568 (94.7)	43 (87.8)	525 (95.3)	
Education				
Primary and below	223 (37.2)	13 (26.5)	210 (38.1)	0.108
Secondary and above	377 (62.8)	36 (73.5)	341 (61.9)	
Gestational age				
Term	536 (89.3)	36 (73.5)	500 (90.7)	
Preterm	64 (10.7)	13 (26.5)	51 (9.3)	< 0.001
Birth weight				
<2.5 Kg	48 (8.0)	3 (6.1)	45 (8.2)	0.789
>2.5 Kg	552 (92.0)	46 (93.9)	506 (91.8)	
Gravidity				
Primigravida	147 (24.5)	14 (28.6)	133 (24.1)	0.489
Multigravida	453(75.5)	35 (71.4)	418 (75.9)	
Previous adverse pregnancy outcome *	Ô.			
Yes	39 (8.6)	2 (5.7)	37 (8.9)	0.756
No	414 (91.4)	33 (94.3)	381 (91.1)	
Knowledge on congenitally transmitted		4		
infections				
Yes	25 (4.2)	1 (2.0)	24 (4.4)	
No	575 (95.8)	48 (98.0)	527 (95.6)	0.712
Under-five children in the household		~		
Yes	396 (66.0)	31 (63.3)	365 (66.2)	0.673
no	204 (43.0)	18 (36.7)	186 (33.8)	
Daycare or Nursery school baby in the				
household				
Yes	259 (43.2)	31 (63.3)	228 (41.4)	0.003
no	341 (56.8)	18 (36.7)	323 (58.6)	

Sharing feeding cup with children				
Yes	107 (17.8)	14 (28.6)	93 (16.9)	0.040
no	493 (82.2)	35 (71.4)	458 (83.1)	
Sharing eating utensil with children				
Yes	88 (14.7)	8 (16.3)	80 (14.5)	0.732
No	512 (85.3)	41 (83.7)	471 (85.5)	
Sharing teeth brush with children				
Yes	42 (7.0)	3 (6.1)	39 (7.1)	0.999
No	558 (93.0)	46 (93.9)	512 (92.9)	
N.gonorrhoeae detected (n=350)				
Yes	15 (4.3)	3 (10.0)	12 (3.8)	0.128
No	333 (95.7)	27 (90.0)	306 (96.2)	
C. trachomatis detected (n=350)				
Yes	29 (8.3)	5 (16.7)	24 (7.5)	0.089
No	319 (91.7)	25 (83.3)	294 (92.5)	
T. vaginalis detected (n=350)				
Yes	11 (3.1)	2 (6.9)	9 (2.8)	0.241
No	335 (96.8)	27 (93.1)	308 (97.2)	
Any of curable STI detected (n=350)			5	
Yes	51 (14.6)	10 (33.3)	41 (12.8)	0.005
No	299 (85.4)	20 (66.7)	279 (87.2)	

*previous adverse pregnancy includes; early neonatal death, stillbirth and preterm birth : STI; Sexually
 transmitted infections

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Erasmushogeschool

197 Seroprevalence

Seropositivity of CMV IgM antibodies was 8.2% (49/600) (95% CI: 6 -10.5%), whereas
seroprevalence of CMV IgG was 88.6% (532/600), (95% CI: 89.5 - 94.0%). Of 532 CMV IgG
positive women, 483 (80.4%) were negative for IgM. Among all pregnant women, 68 (11.4%)
were tested negative for both anti-CMV IgG and IgM, and none showed anti-CMV IgG negativity
but IgM positivity (Table 2).

203 Table 2 Cytomegalovirus IgM and IgG test result of pregnant women

	Anti CMV IgG antibo	ody n (%)	Total n (%)
Anti CMV IgM antibody	Positive	Negative	
Positive	49 (8.2)	0 (0)	49 (8.2)
Negative	483 (80.4)	68(11.4)	551 (91.8)
Total	532 (88.6)	68(11.4)	600

205 CMV seropositivity and associated factors

In bivariable analysis, seropositivity was more common in elder women (>35) compared to the youngest age group, in women who were currently unmarried, giving preterm birth, sharing a feeding cup with children or having nursery schooled children. Moreover women were positive for any of curable STIs also had a higher seroprevalence of CMV compared to those negative for STIs (Table 3).

Furthermore, in multivariable logistic regression maternal IgM seropositivity was associated with elder age groups (AOR = 4.9, 95% CI: 1.0-23.4), currently unmarried women (AOR = 3.8, 95%

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
יג רכ	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
21	
24 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

213	CI: 1.7–7.9), preterm birth (AOR = 3.9, 95% CI: 1.5–10.3) and having nursery schooled children
214	(AOR = 2.7, 95% CI: 1.1-6.4). Mothers with STIs has an association with seroprevalence (AOR
215	= 4.1 , 95% CI: 1.6–10.6) compared to mothers who were diagnosed negative for STIs.

216 Maternal seroprevalence was not significantly different in relation to residence, education level,

to mother's occupation; being employed in child daycare or being health care worker (Table 3).

Table 3. Unadjusted and adjusted associated factors of maternal CMV IgM seropositivity in Southern Ethiopia

Characteristics	Un adjusted	Adjusted	Adjusted	
	OR 95% CI)	P-value	OR (95% CI)	P-value
Age of mothers (years)				
<25	1		1	
25-29	1.5 (0.7 -3.2)	0.318	1.2 (0.4 – 4.0)	0.739
30- 35	1.5 (0.7 -3.2)	0.283	3.0 (1.0 - 9.0)	0.048
>35	3.2 (1.2-9.1)	0.026	4.9 (1.0 – 23.4)	0.047
Marital status				
Married	1	0	1	
Currently unmarried	2.2 (1.1 -4.3)	0.030	3.8 (1.3 -11.2)	0.015
Residence				
Urban	2.5 (1.0 -6.3)	0.064	2.3 (0.7 -7.9)	0.171
Rural	1		1	
Daycare worker				
Yes	2.1 (0.8 -5.3)	0.110	1.1 (0.2-5.4)	0.857
No	1		1	
Health care worker				
Yes	2.8 (1.1 - 7.2)	0.031	1.2 (0.2 – 7.4)	0.841

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

no	1		1	
Education				
Primary and below	0.6 (0.3 -1.1)	0.111	0.7 (0.3 -1.8)	0.475
Secondary and above	1		1	
Gestational age				
Term	1		1	
Preterm	3.5 (1.8 – 7.1)	< 0.001	3.9 (1.5 -10.3)	< 0.006
Daycare or Nursery school baby				
Yes	2.4 (1.3 – 4.5)	0.004	2.7 (1.1 – 6.4)	0.027
no	1		1	
Sharing a cup with children				
Yes	2.0 (1.1 - 3.8)	0.044	2.2 (0.9 - 5.4)	0.074
no	1			
Any of curable STIs (n=350)	Ô.			
Yes	3.4 (1.5-7.8)	0.004	4.1 (1.6- 10.6)	0.003
No	1			
)		2		
Discussion				

Discussion

In this study an overall 8.2% CMV IgM and 88.7% seroprevalence of CMV IgG were detected among pregnant women in southern Ethiopia. The associated factors of seropositivity were age, marital status, the presence of a curable STIs and sharing a cup with children. A statistically significant association was also observed between CMV seropositivity and preterm delivery.

The reported seropositivity of 88.6% CMV IgG in this study was comparable to a previous report of 88.5% h in central Ethiopia but a substantially higher rate (15.5%) of CMV IgM was detected

Page 17 of 24

BMJ Open

in this study.(6) Seropositivity of CMV IgG in our study was in line with a review done in Africa, with ranges from 60% to 100%.(9) Seropositivity rates of 77.3% for IgG and 8.1% for IgM in Kenya,(7) 93% for IgG and 11.1% for IgM in Nigeria,(13) 94% for IgG and 8.5% for IgM in Tanzania(14) were comparable to our finding.

In our study seroprevalence of CMV IgM is in concordance with several African studies.(7, 13-15) However, our rate was higher when compared to 0.4% in Tanzania, (16) 2.5% in Sudan, (17), and 7% in Egypt.(18) In the absence of maternal screening this high rate is alarming for policy makers. By far developed countries pregnant women are screened for CMV because of the consequence for the fetus and newborn (19, 20) However, in most developing countries including Ethiopia, maternal CMV still lack awareness, overlooked and not diagnosed at least for pregnant women.(21) The high rate of positive CMV IgM may not only reflect primary infection but might also be attributed to reinfection or reactivation of CMV during pregnancy. So the reported high seropositivity in this study point to the existing negligence and the need to start screening to detect pregnant women at risk for congenital transmission of CMV.

In this study, elder age has significant association with seroprevalence. The same finding was reported in Sudan,(17) Kenya,(22), and Tanzania.(16) In addition a large scale study in London also reported that seropositivity increases with increasing age.(23) But, in a study in Egypt(18) and in Nigeria(24) age had no association with maternal CMV infection. The highest seroprevalence with age may indicate the more exposure of elders than youngsters or might be the existence of previous infection which can probably reactivated in the current pregnancy.

On the other hand, significant association of seroprevalence with having nursery schooled children among household was observed. For pregnant women the predictable source of CMV infection is

young children mainly exposure to nursery schooled children.(25) Children easily get infected in school and frequently shed CMV in their saliva or urine for many years continuously where spreads readily in preschool setting.(26) This places seronegative pregnant women who have a young child in the home or in day care at increased risk of seroconversion.(27, 28) Susceptibility to acquisition of CMV infection is high possibly through the direct contact with contagious secretions from their own children essentially in situation of poor hygienic practice like in Ethiopia.(23)

Among candidate predictors for maternal CMV seropositivity, occupation like being health care worker, or child day care worker; being multigravida, lower educational level and having other children at home were not detected. However, significant association with women who delivered preterm was reported. Although, preterm delivery might be due to the effect of maternal CMV infection we can not to say the risk factor as there are a lot of other confounding factors for preterm.(29)

Likewise, seropositivity was found to be significantly associated with STIs detected at delivery and currently being unmarried. Mothers who were positive for any of curable STIs had a four-time CMV seropositivity. It is also reported that STIs including CMV is more common in unmarried pregnant women. (23, 25, 30) Although cytomegalovirus is a virus that is transmitted through many body fluids, sexual transmission from a seropositive male partner is an additional established route by which women may be infected with CMV.(31) Indeed, it is somehow expected that sexual transmission is also responsible for reinfection of seropositive mothers with different virus strains in high-seroprevalence populations.(32)

This study lack differentiation of CMV IgM positivity of either primary or secondary (reinfection or reactivation) since we collected samples at the end of pregnancy and avidity test will not suitable. Moreover, it was a hospital-based study and not representative of all pregnant mothers in the locality since a significant portion of mothers may not deliver in the hospital. We lack also appropriate risk factors assessment tool due to cross-sectional nature of the study, hence more representative large scale survey is needed to identify possible risk factors prospectively.

277 Conclusion

In the present study, we documented a high rate of CMV seroprevalence among pregnant women in southern Ethiopia. The presence of a curable STIs, elder age, unmarried women, and having nursery schooled children have a significant association with seropositivity. Given that there is no existing CMV diagnostic facility, special attention should be designed for pregnant women in parallel to the existing antenatal care service. Besides, training health care professionals will support awareness conception for pregnant women concerning the sequels of CMV infection during pregnancy.

Acknowledgments: We thank the HU-CSH microbiology laboratory staffs for provision of all laboratory accommodations during sample processing and storage. We would like to recognise the study participants and a special thanks to midwife nurses at the obstetrics ward of the HU-CSH. Lastly, we want to express our thanks to VLIR-UOS for providing a PhD scholarship.

Contributors: MH and EP contributed to the study design and conceptualisation. MH carried
 out the laboratory work. MH, EL, ZM and EP performed the statistical analysis and interpretation.
 All authors provided critical review and contributed to the write-up and approved the final version

3	
4	
5	
6	
7	
, 0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	

60

306

1 2

of the manuscript. MH had final responsibility to submit for publication. All authors read and amended drafts of the paper and approved the final version.
Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. But this study was a PhD work and a PhD Scholarship is supported by the research from the Belgian Development Cooperation through the VLIR-UOS

297 network program (University collaboration for better health in Ethiopia (UCBHE).

298 Competing interests: no competing interest

299 Patient consent: Obtained.

Ethics approval: Ethical approval from all of the appropriate institutional review boards was
obtained. The ethics review committee of Hawassa University (CMHS/283/2012), Jimma
University (IHRPGD/458/2020), National Health Research Ethics Review Committee (SRA/14.1/
144483/2020) Ethiopia, and Ghent University (PA2019-038/BC-08458) Belgium, approved the
study. The study was conducted in accordance with the Declaration of Helsinki.

305 Data sharing statement: Data are available upon reasonable request. All available data

can be obtained by contacting the corresponding author.

307 References

 Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The "Silent" Global Burden of Congenital Cytomegalovirus. Clinical microbiology reviews. 2013;26(1):86-102.
 Nolan N, Halai UA, Regunath H, Smith L, Rojas-Moreno C, Salzer W. Primary cytomegalovirus infection in immunocompetent adults in the United States - A case series.
 IDCases. 2017;10:123-6. Page 21 of 24

BMJ Open

1		
2		
5 4	313	3. Lazzarotto T, Blázquez-Gamero D, Delforge M-L, Foulon I, Luck S, Modrow S, et al.
5	314	Congenital Cytomegalovirus Infection: A Narrative Review of the Issues in Screening and
6	315	Management From a Panel of European Experts. Frontiers in pediatrics. 2020;8(13).
7	316	4. Britt WJ. Maternal Immunity and the Natural History of Congenital Human
8	317	Cytomegalovirus Infection. Viruses. 2018;10(8):405.
9 10	318	5. Mussi-Pinhata MM, Yamamoto AY. Natural History of Congenital Cytomegalovirus
10	319	Infection in Highly Seropositive Populations. The Journal of infectious diseases.
12	320	2020;221(Supplement_1):S15-s22.
13	321	6. Mamuye Y BN, Delayehu B, Mekonen G Seroepidemiology study of CMV and Rubella
14	322	among pregnant women at St. Paul's Hospital Millennium Medical College, Addis Ababa,
15	323	Ethiopia Ethiop J Health Sciences. 2016:26:427.
16 17	324	7. Maingi Z. Nyamache AK. Seroprevalence of Cytomegalo Virus (CMV) among pregnant
18	325	women in Thika, Kenva, BMC research notes, 2014:7:794
19	326	8 Khairi S. Intisar K. Enan K. Ishag M. Baraa A. Ali Y. Seronrevalence of cytomegalovirus
20	320	infection among pregnant women at Omdurman Maternity Hospital Sudan Journal of Medical
21	270	Laboratory and Diagnosis 2013:4/4):45-9
22	220	A Mandiro D. Rowland Jones S. Mandiro K. Kaha M. Dandara C. Enidomiology of
23 24	329	Getemogolouirus among progrant women in Africa, Journal of infaction in developing countries
25	330	Cytomegalovirus among pregnant women in Airica. Journal of infection in developing countries.
26	331	2019;13(10):805-70.
27	332	10. Bates IVI, Brantsaeter AB. Human cytomegalovirus (CIVIV) in Africa: a neglected but
28	333	important pathogen. Journal of virus eradication. 2016;2(3):136-42.
29	334	11. Ross SA, Fowler KB, Ashrith G, Stagno S, Britt WJ, Pass RF, et al. Hearing loss in children
30 31	335	with congenital cytomegalovirus infection born to mothers with preexisting immunity. The
32	336	Journal of pediatrics. 2006;148(3):332-6.
33	337	12. Bates M, Brantsaeter AB. Human cytomegalovirus (CMV) in Africa: a neglected but
34	338	important pathogen. Journal of virus eradication. 2016;2(3):136-42.
35	339	13. Fowotade A, Okonko IO, Agbede OO, Suleiman ST. High seropositivity of IgG and IgM
36 27	340	antibodies against cytomegalovirus (CMV) among HIV-1 seropositive patients in Ilorin, Nigeria.
38	341	African health sciences. 2015;15(1):1-9.
39	342	14. Ray K, Mahajan M. Seroprevalence of cytomegalovirus antibodies in patients attending
40	343	STD and antenatal clinics. J Commun Dis. 1997;29(2):85-90.
41	344	15. Mhandire D, Duri K, Kaba M, Mhandire K, Musarurwa C, Chimusa E, et al.
42	345	Seroprevalence of Cytomegalovirus Infection Among HIV-Infected and HIV-Uninfected Pregnant
43 11	346	Women Attending Antenatal Clinic in Harare, Zimbabwe. Viral immunology. 2019;32(7):289-95.
44	347	16. Chibwe E. Mirambo MM. Kihunrwa A. Mshana SE. Magnitude of the Cytomegalovirus
46	348	infection among pregnant women attending antenatal clinics in the city of Mwanza. Tanzania.
47	349	BMC research notes 2017-10(1)-489
48	350	17 Hamdan H7 Abdelbagi IF Nasser NM Adam L Seronrevalence of cytomegalovirus and
49	351	rubella among pregnant women in western Sudan Virology journal 2011.8.217
50 51	252	18 Kamel N. Metwally I. Gomaa N. Saved Abmed WA. Lotfi M. Younis S. Primary
52	352	cutomogalovirus infostion in progrant Egyptian women confirmed by sutemogalovirus IgG
53	222	cytomegalovirus infection in pregnant egyptian women commed by cytomegalovirus igo
54	354 255	avially results, we used principles and practice. International journal of the Nuwalt Oniversity,
55	555	neaili Sheille Ceille. 2014,23(1).23-33.
56		
57 58		20
59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

Gyselaers W, Jonckheer P, Ahmadzai N, Ansari M, Carville S, Dworzynski K, et al. What 19. are the recommended clinical assessment and screening tests during pregnancy? Good Clinical Practice (GCP) Brussels: Belgian Health Care Knowledge Centre (KCE). 2015. KCE Reports 248. KCE Reports. 2017;248. Vaudry W, Rosychuk RJ, Lee BE, Cheung PY, Pang X, Preiksaitis JK. Congenital 20. cytomegalovirus infection in high-risk Canadian infants: Report of a pilot screening study. The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale. 2010;21(1):e12-9. 21. Revello MG, Gerna G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clinical microbiology reviews. 2002;15(4):680-715. Maingi Z, Nyamache AK. Seroprevalence of Cytomegalo Virus (CMV) among pregnant 22. women in Thika, Kenya. BMC research notes. 2014;7:794. Tookey PA, Ades AE, Peckham CS. Cytomegalovirus prevalence in pregnant women: the 23. influence of parity. Archives of disease in childhood. 1992;67(7 Spec No):779-83. 24. Yeroh M, Aminu M, Musa B. Seroprevalence of cytomegalovirus infection amongst pregnant women in Kaduna state, Nigeria. African Journal of Clinical and Experimental Microbiology. 2015;16(1):37-44. 25. Fowler KB, Pass RF. Risk Factors for Congenital Cytomegalovirus Infection in the Offspring of Young Women: Exposure to Young Children and Recent Onset of Sexual Activity. Pediatrics. 2006;118(2):e286-e92. Cannon MJ, Hyde TB, Schmid DS. Review of cytomegalovirus shedding in bodily fluids 26. and relevance to congenital cytomegalovirus infection. Rev Med Virol. 2011;21(4):240-55. Pass RF, Hutto C, Ricks R, Cloud GA. Increased rate of cytomegalovirus infection among 27. parents of children attending day-care centers. The New England journal of medicine. 1986;314(22):1414-8. 28. Hyde TB, Schmid DS, Cannon MJ. Cytomegalovirus seroconversion rates and risk factors: implications for congenital CMV. Rev Med Virol. 2010;20(5):311-26. 29. Pitlick MM, Orr K, Momany AM, McDonald EL, Murray JC, Ryckman KK. Determining the prevalence of cytomegalovirus infection in a cohort of preterm infants. Journal of neonatal-perinatal medicine. 2015;8(2):137-41. Shakya S, Thingulstad S, Syversen U, Nordbø SA, Madhup S, Vaidya K, et al. Prevalence 30. of Sexually Transmitted Infections among Married Women in Rural Nepal. Infectious Diseases in Obstetrics and Gynecology. 2018;2018:4980396. Staras SA, Flanders WD, Dollard SC, Pass RF, McGowan JE, Jr., Cannon MJ. Influence of 31. sexual activity on cytomegalovirus seroprevalence in the United States, 1988-1994. Sexually transmitted diseases. 2008;35(5):472-9. 32. Adachi K, Xu J, Yeganeh N, Camarca M, Morgado MG, Watts DH, et al. Combined evaluation of sexually transmitted infections in HIV-infected pregnant women and infant HIV transmission. PloS one. 2018;13(1):e0189851.

Section/Topic	ltem #	Recommendation to S	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what avas a bound	2
Introduction	•		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods		and	
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure follow-up, and data collection	5
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modified. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	uantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which growings were chosen and why		7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	7
Results			

d by copyright, 6/bmjopen-202

 6/bmjopen-: d by copyrig

GEZ-LTA

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed 도 말 것	9
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram 5 9	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information by posures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	12
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their president (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	13
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning of period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyzes	
Discussion		ning	
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-18
Generalizability	21	Discuss the generalisability (external validity) of the study results	18
Other information		ar te	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable for the original study on which the present article is based	19

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exangeles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinearg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.spobe-statement.org.

BMJ Open

Seroprevalence and associated factors of maternal cytomegalovirus in Southern Ethiopia: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051390.R1
Article Type:	Original research
Date Submitted by the Author:	24-Jun-2021
Complete List of Authors:	zenebe, MENGISTU; Hawassa University College of Medicine and Health Sciences, medical laboratory sciences; Ghent University Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences Mekonnen, Zeleke; Jimma University College of Public Health and Medical Sciences, School of Medical Laboratory Sciences; Loha, Eskindir; University of Bergen; Chr Michelson Institute Padalko, Elizaveta; Ghent University, Department of Diagnostic Sciences; Ghent University Hospital, Department of Diagnostic Sciences
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Public health, Infectious diseases, Global health
Keywords:	OBSTETRICS, Diagnostic microbiology < INFECTIOUS DISEASES, Maternal medicine < OBSTETRICS, Tropical medicine < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
3
1
4
5
6
7
, 0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
∠ ı 22
22
23
24
25
26
20
27
28
29
30
21
31
32
33
34
25
22
36
37
38
30
10
40
41
42
43
11
44
45
46
47
48
40
49
50
51
52
52
55
54
55
56
57
57
58
59
60

1

1	Seroprevalence and associated factors of maternal
2	cytomegalovirus in Southern Ethiopia: a cross-sectional study
3	*Mengistu Hailemariam Zenebe ^{1, 2, 3} , Zeleke Mekonnen ² , Eskindir Loha ^{4, 5} and Elizaveta Padalko ^{3,}
4	6
5	¹ School of Medical Laboratory Sciences, Hawassa University college of Medicine and Health
6	Sceinces, Hawassa, Ethiopia
7	² School of Medical Laboratory Sciences, Jimma University Institute of Health
8	Jimma University, Jimma, Ethiopia
9	³ Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
10	⁴ Centre for International Health, University of Bergen, Bergen, Norway
11	⁵ Chr. Michelson Institute, Bergen, Norway
12	⁶ Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
13	
14	*Corresponding author, mailing address: School of laboratory science Hawassa University
15	P.o.Box=1560, Hawassa, Ethiopia, Phone: (+251913641103), E-mail address:
16	mengamariam@yahoo.com or mengemariamzenebe@gmail.com
17	
18	

1	
2	
3	
4	
5	
6	
7	
8	
a	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
22	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
ر. ۵۷	
-10 40	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	

Abstract 19 **Objectives** The aim of this study was to assess the seroprevalence and associated factors of CMV 20 21 among pregnant women in Southern Ethiopia. Design Cross-sectional study. 22 Setting The study was conducted in Hawassa University comprehensive and specialized hospital. 23 Hawassa, Southern Ethiopia. 24 Participants A total of 600 consecutive pregnant women attending the delivery ward were 25 recruited for the study from August to October 2020. 26 Outcome measures The study assessed the rate of maternal anti-CMV IgG and IgM antibodies. 27 28 The association of obstetric history, sociodemographic and behavioural characteristics with seropositivity of CMV was also evaluated based on the collected data using structured questioners. 29 **Results** Seropositivity for CMV IgM antibodies was 8.2% (49/600) (95% CI: 6 -10.5%), whereas 30 the CMV IgG was 88.7% (532/600), (95% CI: 89.5 - 94.0%). Seroprevalence was higher in women 31 of older age, currently unmarried and having nursery schooled children. Moreover, CMV 32 seropositivity was significantly associated with any of the detected curable sexually transmitted 33 infection (STIs). Seroprevalence was not significantly related to previous adverse pregnancy 34 outcome, gravidity, being a child day care occupant mother, and birth weight of the newborn. 35 36 **Conclusion** In the present study, we identified a high rate of CMV IgM seropositivity among pregnant women in southern Ethiopia. Given that there is no existing CMV diagnosis, special 37 attention should be designed for pregnant women in parallel to the existing antenatal care facility. 38 39 Besides, training health care professionals will support awareness conception among pregnant women concerning the sequels of CMV infection during pregnancy. 40 41

2						
3 ⊿	42	Strengths and limitations of this study				
5	43	Su ongens and minitations of this study				
6	15					
7 8	44	• This study is the first to present the seroprevalence of maternal cytomegalovirus from the				
9	4 5	Southern region in Ethionic and that provides the first awareness in medical governmental				
10	45	Southern region in Europia and that provides the first awareness in medical, governmental				
11 12	46	and societal stakeholders.				
13						
14	47	• The study assessed both anti-CMV IgG and anti-CMV IgM seropositivity that can predict				
15 16						
17	48	the possible threat of congenital CMV infection to the developing fetus.				
18 10	49	• In this study, the factors associate with the level of seropositivity were explored among				
20						
21	50	pregnant women.				
22 23						
24	51	• We were unable to distinguish primary from secondary (reinfection or reactivation) as there				
25 26	52	was no baseline data at the beginning of pregnancy to decide about seroconversion				
20 27	52	was no baserine data at the beginning of pregnancy to decide about screeon version.				
28	53	• Being a hospital-based study, our finding will not be representative of all pregnant mothers				
29 30						
31	54	in the locality since a significant portion of mothers may not deliver in the hospital.				
32						
33 34	55					
35						
36 37	56					
38						
39	57					
40 41	57					
42						
43	58					
44 45						
46	59					
47 48						
49	60					
50	00					
51 52						
53	61					
54						
55 56						
57						
58		3				
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

BMJ Open

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.	Erasmushogeschool .	AJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA
--	---------------------	---

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

62 Introduction

64 Cytomegalovirus (CMV) is the most common infection during pregnancy that poses the risk of 65 congenital CMV infections (cCMV) worldwide. (1) In immunocompetent hosts, primary CMV 66 infection may be asymptomatic or may cause mild self-limiting disease with fever, headaches, and 67 myalgia and after primary infection, the virus remains latent. Latency following a primary 68 infection may relapse by periodic reactivations that give rise to recurrent infections later in life 69 when the body immunity is suppressed. (2)

CMV infection or reactivation during pregnancy is mostly asymptomatic, however may lead to fetal infection and cCMV syndromes. (3) Congenital CMV infection of the fetus of mothers having pre-existing anti-CMV antibodies is also possible due to the risk of reactivation or reinfection with a different strain of CMV during pregnancy. (4) Therefore unlike previous perception the high maternal CMV seroprevalence in developing countries like Ethiopia does not eliminate the threat of cCMV infection of the newborn. Worldwide cCMV following nonprimary maternal infections is more common in individuals of lower socioeconomic background. (5) In addition, due to a high seroprevalence of CMV in the community of the developing countries, there would be a rare possibility of recurrent CMV infection as a result of reinfection. (6) As to the report from Portugal, maternal recurrent infections can have a significant impact on cCMV infections. (7)

So far previous studies have shown that maternal CMV seroprevalence rates ranging from low (50
to 70%) in developed countries to high (> 70%) in developing countries. (1) Presently, data on the
prevalence of maternal CMV and associated risk factors are scanty in Ethiopia. The only available
study conducted in Ethiopia had reported the prevalence of 15.5% for IgM and 88.6% for CMV
IgG.(8)

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

In Africa, the highest prevalence of CMV IgG was estimated ranging from 72 - 97.5% (9, 10) and of CMV IgM antibodies to range from 0-15.5%. (11) However, for several reasons CMV infection among pregnant women in Africa have been overlooked. (12) One of the main reasons for inattention is the perception that being infected in early childhood endures immunity for subsequent infection, so maternal reactivation or reinfection during pregnancy is unlikely to cause severe congenital infection. (13) However, in pregnant women the immune system is somehow suppressed. So ignoring maternal CMV and the subsequent effect of cCMV infection in Africa is short-sighted; furthermore, the possible confounding effects of HIV infection, malnutrition, tuberculosis, and a general higher disease burden of the continent must be taken into account. (14)

The objective of the study was to assess the seroprevalence of CMV among pregnant women and determine associated factors in Southern Ethiopia. Information regarding the maternal prevalence of CMV and associated risk factors is almost absent in Ethiopia. Being the first study in the Southern region of Ethiopia, the finding will deliver the first awareness in medical, governmental and societal stakeholders in the region. Moreover, the study will attract health care professional attention and improve antenatal care in this domain. Indeed, it will generate awareness in the community, mainly pregnant women, regarding the consequence of CMV during pregnancy in Ethiopia.

102 Methodology

103 Study design and setting

From August to October 2020, a cross-sectional study was conducted among pregnant women who
 came for delivery in the obstetrics ward at Hawassa University Comprehensive and Specialized

BMJ Open

Hospital (HU-CSH), Ethiopia. The HU-CSH is one of the teaching hospitals serving as a referral
centre for both public and private hospitals for more than 5 million inhabitants in the Southern
Region and the neighbouring region of Ethiopia. The hospital has 500 beds, accommodating
around 2,500 pregnant women for antenatal care (ANC) visits and conducting about 5,400
deliveries annually.

Participants

All pregnant women were recruited regardless of gestational age however, a mother with any critical illness (such as airway obstruction, current history of seizures or unconsciousness) that would deter them from participation in the study were excluded. Interrelated with the first phase of this project, where the initial 350 pregnant women had been tested for curable STI (C. trachomatis, N. gonorrhoeae and T. vaginalis) using GeneXpert (Xpert CT/NG and Xpert TV assays, Cepheid, Sunnyvale, California, USA), our manuscript being submitted and under review (manuscript number PONE-D-20-37668). In this second phase of the study, by including those initially enrolled 350 pregnant women, a total of 600 consecutively enrolled pregnant women participated. A midwife at the obstetric ward provided general information about the study to all pregnant women before recruitment.

² 122 Sample size and sampling

The sample size was calculated based on the single population proportion formula by considering 15.5% prevalence of maternal anti-CMV IgM from a previous study conducted in central Ethiopia (8), a 3% margin of error and a 95% confidence level. Thus, the minimum sample size was 560. However, a total of 600 women were consecutively enrolled to signify the findings of seroprevalence of cytomegalovirus among pregnant women in the study settings. Sampling was BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

based on convenience and continued until a total of 600 participants reached. If there is nonresponse during data collection, the study will be solved by taking subsequent participant until the intended sample size achieved.

131 Data collection

132 Socio-demographic, obstetric and behavioral data

Trained midwife at the obstetric ward provided general information about the study to pregnant women who came for delivery. Pregnant women agreeing to join in the study were interviewed using a structured questionnaire translated in Amharic, the language spoken by most people in the study area. The translated questionnaire was pre-tested on random mother at the antenatal clinic to ensure the validity and feasibility of the questions as conducted in similar studies and the principal investigator carefully checked the process of each data collection every day. Information related to socio-demographic characteristics (e.g., age, marital status, and educational level), obstetric history, and behavioural data were collected.

³⁵ 141 Sample collection and storage ³⁶

The midwife-nurse aseptically collected a 3 ml blood sample from each subject. The collected samples were transported to the HU-CMHS microbiology laboratory within 12 hours of collection and the processed serums kept at -20 C⁰ until transported. Then frozen samples at -20° C were transported on dry ice packs to the testing laboratory.

146 Laboratory methods

Testing was performed in Belgium, Ghent University hospital, department of laboratory medicine,
using a commercially available enzyme immunoassay (ELISA) kit (EUROIMMUN Medizinische
Page 9 of 27

BMJ Open

Labordiagnostika AG, Lübeck, Germany) for anti-CMV IgG and IgM according to the manufacturer's instructions. The sensitivity amounted to 99.2%, with a specificity of 100%. Results were evaluated semi-quantitatively by calculating a ratio of the extinction value of the patient sample over the extinction value of the calibrator optical density at 450 nm. Seropositivity was defined according to the guidelines given by the manufacturer, CMV negative when the ratio cut off value was < 0.8, the borderline between 0.8 and 1.1, and positive if >1.1 for both IgG and IgM.

- 156 Ethical considerations

Ethical approval from all of the appropriate institutional review boards was obtained. The ethics Hawassa University (CMHS/283/2012), review committee of Jimma University (IHRPGD/458/2020), National Health Research Ethics Review Committee (SRA/14.1/ 144483/2020) Ethiopia, and Ghent University (PA2019-038/BC-08458) Belgium, approved the study.

The study was conducted in accordance with the Declaration of Helsinki, the significance of the study was clarified to each study participant and parents of a few minorities before obtaining informed consent. Permission attained from the minor (under the age of 18 years) participants parent or legal guardian according to the Ethiopian national research Ethics review guideline. Eventually, consent was granted from each participant including those who were under the age of 18 years with a participant confirmatory agreement to participate in the study. Confidentiality of the participant's information was ensured by anonymous typing.

Data analysis

Descriptive statistics were used to characterize the socio-demographic and obstetric and medical characteristics of the participants. We evaluated the seroprevalence of CMV and associated factors using a logistic regression model. Bivariate comparisons using chi-square or Fisher's exact test where suitable were used to examine the relationships between participant characteristics and CMV test result. Finally, multivariable logistic regression was used to identify characteristics independently associated with serostatus of CMV and adjusting for other factors. Variables with a significant level of < 0.2 were included in the final model. P-value < 0.05 is considered statistically significant. SPSS software version 20.0 (SPSS Inc. Chicago, IL, USA) was used for all analyses.

Patient and public involvement

No patients or the public were directly involved in the design, conduct, reporting or dissemination °M' plans of this research.

Results

Participants

Six hundred pregnant women were assessed for seroprevalence of CMV and all women met the inclusion criteria and enrolled in the study, generating a 100% response rate. The mean of maternal age was $27.0 \pm (SD)$ 5.2, with a ranging between 17 and 41. More than one-third of the study participant were under the age of 25. About one-fourth of the women were Primigravida. Out of the 600 participant 84 (14%) were currently unmarried, 475 (79.2%) were residing in urban setting, 377 (62%) were above or at secondary level of education. Forty-eight (8%) of the newborns were

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

under-weighted (<2.5 Kg), and 64 (10%) of the births were preterm. Regarding STIs test result, 51 (14.6%) pregnant women were tested positive for any of curable STIs (Table 1). In this study, around 96% of mothers had no knowledge of congenitally transmitted infection or the associated risks in pregnancy and about 9% of them had previous adverse pregnancy outcome. The chi- squire analysis showed that, seropositivity for CMV IgM significantly associated (p < 0.05) with marital status, gestational age, having nursery school baby in the household, sharing a cup with children and having any of detected curable STIs. However, there was no significant association with birth weight, gravidity and having previous adverse pregnancy outcome i.e. preterm birth, stillbirths and early neonatal death (Table 1).

Table 1 Maternal characteristics and associated factor with CMV IgM seropositivity in Southern Ethiopia

Characteristics	Total (N=600)	IgM-Positive	IgM-Negative	p-value †
	n (%)	(n=49) n (%)	(n=551) n (%)	
Age of mothers (years)				
<25	233 (38.8)	14 (28.6)	219 (39.7)	0.148
25-29	162 (27.0)	14 (28.6)	148 (26.9)	
30-35	170 (28.3)	15 (30.6)	155 (28.1)	
>35	35 (5.8)	6(12.2)	29 (5.3)	
Marital status				
Married	516 (86.0)	37 (75.5)	479 (86.9)	
Currently unmarried	84 (14.0)	12 (24.5)	72 (13.1)	0.027
Residence				
Urban	475 (79.2)	44 (89.8)	431 (78.2)	0.056

Rural	125 (20.8)	5 (10.2)	120 (21.8)	
ANC follow up during pregnancy				
Yes	576 (96.0)	48 (98.0)	528 (95.8)	
no.	24 (4 0)	1 (2 0)	22 (4 2)	0.712
	24 (4.0)	1 (2.0)	23 (4.2)	0.712
Employed as daycare worker				
Yes	40 (6.7)	6 (12.2)	34 (6.2)	0.126
No	560 (93.3)	43 (87.8)	517 (93.8)	
Employed as health care				
Yes	32 (5.3)	6 (12.2)	26 (4.7)	0.055
no	568 (94.7)	43 (87.8)	525 (95.3)	
Education				
Primary and below	223 (37.2)	13 (26.5)	210 (38.1)	0.108
Secondary and above	377 (62.8)	36 (73.5)	341 (61.9)	
Gestational age	Ô.			
Term	536 (89.3)	36 (73.5)	500 (90.7)	
Preterm	64 (10.7)	13 (26.5)	51 (9.3)	< 0.001
Birth weight		4		
<2.5 Kg	48 (8.0)	3 (6.1)	45 (8.2)	0.789
>2.5 Kg	552 (92.0)	46 (93.9)	506 (91.8)	
Gravidity				
Primigravida	147 (24.5)	14 (28.6)	133 (24.1)	0.489
Multigravida	453(75.5)	35 (71.4)	418 (75.9)	
Previous adverse pregnancy outcome *				
Yes	39 (8.6)	2 (5.7)	37 (8.9)	0.756
No	414 (91.4)	33 (94.3)	381 (91.1)	
Knowledge on congenitally transmitted				

Yes	25 (4.2)	1 (2.0)	24 (4.4)	
No	575 (95.8)	48 (98.0)	527 (95.6)	0.712
Under-five children in the household				
Yes	396 (66.0)	31 (63.3)	365 (66.2)	0.673
no	204 (43.0)	18 (36.7)	186 (33.8)	
Daycare or Nursery school baby in the				
household				
Yes	259 (43.2)	31 (63.3)	228 (41.4)	0.003
no	341 (56.8)	18 (36.7)	323 (58.6)	
Sharing feeding cup with children				
Yes	107 (17.8)	14 (28.6)	93 (16.9)	0.040
no	493 (82.2)	35 (71.4)	458 (83.1)	
Sharing eating utensil with children	6			
Yes	88 (14.7)	8 (16.3)	80 (14.5)	0.732
No	512 (85.3)	41 (83.7)	471 (85.5)	
Sharing teeth brush with children				
Yes	42 (7.0)	3 (6.1)	39 (7.1)	0.999
No	558 (93.0)	46 (93.9)	512 (92.9)	
N.gonorrhoeae detected (n=350)				
Yes	15 (4.3)	3 (10.0)	12 (3.8)	0.128
No	333 (95.7)	27 (90.0)	306 (96.2)	
C. trachomatis detected (n=350)				
Yes	29 (8.3)	5 (16.7)	24 (7.5)	0.089
No	319 (91.7)	25 (83.3)	294 (92.5)	
T. vaginalis detected (n=350)				
Yes	11 (3.1)	2 (6.9)	9 (2.8)	0.241
No	335 (96.8)	27 (93.1)	308 (97.2)	

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Any of curable STI detected (n=350)				
Yes	51 (14.6)	10 (33.3)	41 (12.8)	0.005
No	299 (85.4)	20 (66.7)	279 (87.2)	
*previous adverse pregnancy includes; transmitted infections † Chi-square Seroprevalence	; early neonatal d	eath, stillbirth and	l preterm birth : STI	Sexually
*previous adverse pregnancy includes; ransmitted infections [†] Chi-square Seroprevalence Seropositivity of CMV IgM antil	early neonatal d	leath, stillbirth and 2% (49/600) (9	l preterm birth : STI 5% CI: 6 -10.5%), whereas

positive women, 483 (80.4%) were negative for IgM. Among all pregnant women, 68 (11.4%)

were tested negative for both anti-CMV IgG and IgM, and none showed anti-CMV IgG negativity

but IgM positivity (Table 2).

Table 2 Cytomegalovirus IgM and IgG test result of pregnant women

	Anti CMV IgG antibody n ((%)	Total n (%)
Anti CMV IgM antibody	Positive	Negative	
Positive	49 (8.2)	0 (0)	49 (8.2)
Negative	483 (80.4)	68(11.4)	551 (91.8)
Total	532 (88.7)	68(11.4)	600

1 2						
3 4 5	212					
6 7 8 9	213	CMV seropositivity and a	issociated fact	ors		
10 11 12	214	In bivariable analysis, seropositivity	y was more commo	n in elder wo	omen (>35) comj	pared to the
13 14	215	youngest age group, in women wh	o were currently ur	nmarried, giv	ving preterm birth	1, sharing a
15 16 17	216	feeding cup with children or having	g nursery schooled (children. Mo	reover women w	ere positive
17 18 19	217	for any of curable STIs also had a h	igher seroprevalenc	e of CMV co	mpared to those 1	negative for
20 21 22	218	STIs (Table 3).				
23 24 25	219	Furthermore, in multivariable logist	ic regression, being	, over the age	of 30 years had	higher odds
25 26 27	220	for CMV IgM seropositivity compar-	ed to being under 25	(AOR = 4.9,	95% CI: 1.0–23.4	4), currently
28 29	221	unmarried women (AOR = 3.8, 95%	% CI: 1.7−7.9), pret€	erm birth (AC	OR = 3.9, 95% C	I: 1.5–10.3)
30 31	222	and having nursery schooled childre	en (AOR = 2.7, 95%	∕₀ CI: 1.1–6.4). Mothers with S	STIs had an
32 33 24	223	association with seroprevalence (AC	OR = 4.1, 95% CI:	1.6–10.6) cor	npared to mother	s who were
34 35 36	224	diagnosed negative for STIs.				
37 38 39	225	Maternal seroprevalence was not	significantly asso	ciated with	residence, educa	ation level,
40 41 42	226	occupation, being employed in a chi	ld daycare centre, o	r being a hea	lth care worker (7	Гable 3).
43 44 45	227	Table 3. Unadjusted and adjusted	associated factors	of maternal	CMV IgM seror	oositivity in
46 47 48	228	Southern Ethiopia				
49 50	Cł	naracteristics	Un adjusted *		Adjusted *	
50 51			OR 95% CI)	P-value	OR (95% CI)	P-value
52 53 54	Ag	ge of mothers (years)				

1

59 60

55

56 57 58 <25

25-29	1.5 (0.7 -3.2)	0.318	1.2 (0.4 – 4.0)	0.739
30- 35	1.5 (0.7 -3.2)	0.283	3.0 (1.0 – 9.0)	0.048
>35	3.2 (1.2–9.1)	0.026	4.9 (1.0 – 23.4)	0.047
Marital status				
Married	1		1	
Currently unmarried	2.2 (1.1 -4.3)	0.030	3.8 (1.3 -11.2)	0.015
Residence				
Urban	2.5 (1.0 -6.3)	0.064	2.3 (0.7 -7.9)	0.171
Rural	1		1	
Daycare worker				
Yes	2.1 (0.8 -5.3)	0.110	1.1 (0.2-5.4)	0.857
No	1		1	
Health care worker				
Yes	2.8 (1.1 - 7.2)	0.031	1.2 (0.2 – 7.4)	0.841
no	1		1	
Education	6),		
Primary and below	0.6 (0.3 -1.1)	0.111	0.7 (0.3 -1.8)	0.475
Secondary and above	1	0	1	
Gestational age				
Term	1		1	
Preterm	3.5 (1.8 – 7.1)	<0.001	3.9 (1.5 -10.3)	< 0.006
Daycare or Nursery school baby				
Yes	2.4 (1.3 – 4.5)	0.004	2.7 (1.1 – 6.4)	0.027
no	1		1	
Sharing a cup with children				
Yes	2.0 (1.1 - 3.8)	0.044	2.2 (0.9 – 5.4)	0.074
no	1			
	1	1	i la	1

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Any	y of curable STIs (n=350)				
Yes	3	3.4 (1.5-7.8)	0.004	4.1 (1.6- 10.6)	0.003
No		1			
229	* Logistic regression				
230	Regarding CMV IgG serop	ositivity, elder women	(>30), wome	n with of primar	y or low
231	educational level and women	having nursery schoole	d children sh	own association in	ı bivarial
232	analysis. There was no assoc	ciated factor detected be	etween CMV	IgG seropositivity	rate w
:33	maternal characteristic but, m	other having nursery sch	ooled children	has an association	with CN
234	IgG seroprevalence (AOR = 1	1.8, 95% CI: 1.0–3.0), (T	able 4).		
			a .		•,• •,
.35	Table 4. Unadjusted and ad	justed associated factor	's of materna	I CMV IgG serop	ositivity
236	Southern Ethiopia				
	Characteristics	Un adjusted	*	Adjusted *	
		OR 95% CI	P-value	OR (95% CI)	Dyolu
	Age of mothers (years)				r-valu
	8 (*)				r-vaiu
	<25	1	-0	5	r-vaiu
	<25 25-29	1 1.2 (0.7 -2.3)	0.482	1.0 (0.5- 1.9)	0.991
	<25 25-29 30- 35	1 1.2 (0.7 -2.3) 2.2 (1.1 -4.3)	0.482	1.0 (0.5- 1.9) 1.8 (0.9- 3.8)	0.991
	25 25-29 30- 35 >35	1 1.2 (0.7 -2.3) 2.2 (1.1 -4.3) 1.3 (0.4-3.9)	0.482	1.0 (0.5- 1.9) 1.8 (0.9- 3.8) 0.9 (0.3- 1.0)	0.991 0.095 0.877
	25-29 30-35 >35 Marital status	1 1.2 (0.7 -2.3) 2.2 (1.1 -4.3) 1.3 (0.4– 3.9)	0.482	1.0 (0.5- 1.9) 1.8 (0.9- 3.8) 0.9 (0.3- 1.0)	0.991 0.095 0.877
	 <25 <25 25-29 30- 35 >35 Marital status Married 	1 1.2 (0.7 -2.3) 2.2 (1.1 -4.3) 1.3 (0.4– 3.9)	0.482 0.028 0.663	1.0 (0.5- 1.9) 1.8 (0.9- 3.8) 0.9 (0.3- 1.0)	0.991 0.095 0.877
	Solution of the second seco	1 1.2 (0.7 -2.3) 2.2 (1.1 -4.3) 1.3 (0.4-3.9) 1 0.8 (0.37 - 1.	0.482 0.028 0.0663 7)	1.0 (0.5- 1.9) 1.8 (0.9- 3.8) 0.9 (0.3- 1.0)	0.991 0.095 0.877
	Solution of the second seco	1 1.2 (0.7 -2.3) 2.2 (1.1 -4.3) 1.3 (0.4– 3.9) 1 0.8 (0.37 – 1.	0.482 0.028 0.0663 7) 0.573	1.0 (0.5- 1.9) 1.8 (0.9- 3.8) 0.9 (0.3- 1.0)	0.991 0.095 0.877

D 1	1	1	1	
Kural	1			
Daycare worker				
Yes	0.9 (0.3-2.3)	0.810		
No	1			
Health care worker				
Yes	0.9 (0.3 – 2.6)	0.831		
no	1			
Education				
Primary and below	1.7 (1.0 – 2.8)	0.041	0.6 (0.4- 1.0)	0.037
Secondary and above	1			
Gestational age				
Term	1			
Preterm	0.9 (0.4-1.9)	0.756		
Daycare or Nursery school baby	Ô,			
Yes	1.9 (1.1 – 3.1)	0.017	1.8 (1.0- 3.0)	0.045
no	1			
Sharing a cup with children	4	2		
Yes	1.1 (0.6 – 2,3)	0.705		
no	1	5		
Any of curable STIs (n=350)				
Yes	0.8 (0.3 – 1,9)	0.578		
No	1			

237 * Logistic regression

238 Discussion

In this study an overall 8.2% CMV IgM and 88.7% seroprevalence of CMV IgG were detected among pregnant women in southern Ethiopia. The associated factors of seropositivity were age, marital status, the presence of curable STIs and sharing a cup with children. A statistically significant association was also observed between CMV seropositivity and preterm delivery.

The reported seropositivity of 88.7% CMV IgG in this study was comparable to a previous report of 88.5% in central Ethiopia but a substantially higher rate (15.5%) of CMV IgM was detected in this study. (8) Seropositivity of CMV IgG in our study was in line with a review done in Africa, with ranges from 60% to 100%. (11) Seropositivity rates of 77.3% for IgG and 8.1% for IgM in Kenya, (9) 93% for IgG and 11.1% for IgM in Nigeria,(15) 94% for IgG and 8.5% for IgM in Tanzania (16) were comparable to our finding.

In our study seroprevalence of CMV IgM is in concordance with several African studies.(9, 15-17) However, our rate was higher when compared to 0.4% in Tanzania, (18) 2.5% in Sudan, (19), and 7% in Egypt. (20) In the absence of maternal screening this high rate is alarming for policy makers. By far developed countries pregnant women are screened for CMV because of the consequence for the fetus and newborn. (21, 22) However, in most developing countries including Ethiopia, maternal CMV still lacks awareness, is overlooked and not diagnosed at least for pregnant women. (23) The high rate of positive CMV IgM may not only reflect primary infection but might also be attributed to reinfection or reactivation of CMV during pregnancy. So the reported high seropositivity in this study point to the existing negligence and the need to start screening to detect pregnant women at risk for congenital transmission of CMV.

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Earlier studies have shown that there was considerable debate regarding the relationship between maternal age and CMV seroprevalence. In this study, elder age had significant association with CMV IgM seroprevalence. The same finding was reported in Kenya, (24), in Nigeria, (25) and Tanzania. (18) However, a study in Ethiopia, (8) in Egypt (20) Sudan, (19), China, (26) and in Nigeria (27) have reported that age had no association with maternal CMV infection. Unlike our finding, studies in Iraq high rate of IgM in young women (28), and in USA CMV IgM seroprevalence varied by age with the highest IgM seroprevalence among younger and lower among those elderly were reported. (29) The highest seroprevalence with age in this study may indicate the more lifetime episodes exposure of elders than youngsters or might be the existence of previous infection which can probably reactivated in the current pregnancy. In fact, the observed difference in CMV seroprevalence by age may be useful to realize the risk of cCMV transmission and are useful for ascertaining target populations for intervention to reduce congenital CMV transmission. (29)

On the other hand, a significant association of seroprevalence with having nursery schooled children among households was observed. For pregnant women, the predictable source of CMV infection is young children mainly exposure to nursery schooled children. (30) Children easily get infected in school and frequently shed CMV in their saliva or urine for many years continuously that could spread readily even in a preschool setting. (31) This places seronegative pregnant women who have a young child in the home or in day care at increased risk of seroconversion. (32, 33) Susceptibility to the acquisition of CMV infection is high possibly through the direct contact with contagious secretions from their children essentially in a situation of poor hygienic practice like in Ethiopia. (34)

Among candidate predictors for maternal CMV seropositivity, occupations like being health care worker or child day-care worker; being multigravida, lower educational level and having other children at home did not shown any association. However, there was significant association for those with preterm delivery. Although, maternal CMV infection may result in preterm delivery, its isolated impact could not be assessed since we did not study other potential confounding factors.(35)

Likewise, seropositivity was found to be significantly associated with STIs detected at delivery and currently being unmarried. Mothers who were positive for any of curable STIs had a four-time CMV seropositivity. It is also reported that STIs including CMV to be more common in unmarried pregnant women. (30, 34, 36) Although cytomegalovirus is a virus that is transmitted through many body fluids, sexual transmission from a seropositive male partner is an additional established route by which women may be infected with CMV.(37) Indeed, it is somehow expected that sexual transmission is also responsible for the reinfection of seropositive mothers with different virus strains in high-seroprevalence populations.(38)

Although, CMV IgG avidity testing is a valuable laboratory tool for distinguishing primary from non-primary CMV infection, an avidity test was not performed in this study. Hence, this study lacks differentiation of CMV IgM positivity of either primary or non-primary (reinfection or reactivation) as we collected samples at the end of the pregnancy period that avidity test will not be suitable. Moreover, it was a hospital-based study and not representative of all pregnant mothers in the locality since a significant portion of mothers may not deliver in the hospital. We lack also appropriate risk factors assessment tool due to the cross-sectional nature of the study, hence a more representative large-scale survey is needed to identify possible risk factors prospectively. Furthermore, this is the first study from the Southern region in Ethiopia and that

makes the first awareness in medical, governmental and societal stakeholders. Thus, more studies

may need to be accomplished before the introduction of appropriate measures.

306 Conclusion

In the present study, we documented a high rate of CMV seroprevalence among pregnant women in southern Ethiopia. The presence of curable STIs, elder age, unmarried women, and having nursery schooled children showed a significant association with seropositivity. Given that there is no existing CMV diagnostic facility, special attention should be designed to pregnant women in parallel to the existing antenatal care service. Besides, training health care professionals will support awareness conception for pregnant women concerning the sequels of CMV infection during pregnancy.

Acknowledgments: We thank the HU-CSH microbiology laboratory staffs for the provision of all laboratory accommodations during sample processing and storage. We would like to recognise the study participants and a special thanks to midwife nurses at the obstetrics ward of the HU-CSH. Lastly, we want to express our thanks to VLIR-UOS for providing a PhD scholarship.

Contributors: MH and EP contributed to the study design and conceptualisation. MH carried
out the laboratory work. MH, EL, ZM and EP performed the statistical analysis and interpretation.
All authors provided critical review and contributed to the write-up and approved the final version
of the manuscript. MH had final responsibility to submit for publication. All authors read and
amended drafts of the paper and approved the final version.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. But this study was a PhD work and a PhD Scholarship is supported by the research from the Belgian Development Cooperation through the VLIR-UOS network program (University collaboration for better health in Ethiopia (UCBHE). Competing interests: no competing interest Patient consent: The significance of the study was clarified to each study participant and parents of a few minorities prior to obtaining permission to participate in the study. Participation was fully voluntary and informed consent was obtained from all participants who were 18 years old or above. Informed consent was also obtained from the parents or legal guardians of the participants who were under the age of 18 years prior to their enrolment in the study. Confidentiality of the participant's information was ensured by anonymous typing. Ethics approval: Ethical approval from all of the appropriate institutional review boards was obtained. The ethics review committee of Hawassa University (CMHS/283/2012), Jimma University (IHRPGD/458/2020), National Health Research Ethics Review Committee (SRA/14.1/ 144483/2020) Ethiopia, and Ghent University (PA2019-038/BC-08458) Belgium, approved the study. The study was conducted in accordance with the Declaration of Helsinki. Data sharing statement: Data are available upon reasonable request. All available data

342 Competing interests

The authors declare that they have no competing interest.

can be obtained by contacting the corresponding author.

References

1. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The "Silent" Global Burden of Congenital Cytomegalovirus. Clinical microbiology reviews. 2013;26(1):86-102. Nolan N, Halai UA, Regunath H, Smith L, Rojas-Moreno C, Salzer W. Primary 2. cytomegalovirus infection in immunocompetent adults in the United States - A case series. IDCases. 2017;10:123-6. Lazzarotto T, Blázquez-Gamero D, Delforge M-L, Foulon I, Luck S, Modrow S, et al. 3. Congenital Cytomegalovirus Infection: A Narrative Review of the Issues in Screening and Management From a Panel of European Experts. Frontiers in pediatrics. 2020;8(13). Britt WJ. Maternal Immunity and the Natural History of Congenital Human 4. Cytomegalovirus Infection. Viruses. 2018;10(8):405. Mussi-Pinhata MM, Yamamoto AY. Natural History of Congenital Cytomegalovirus 5. Infection in Highly Seropositive Populations. The Journal of infectious diseases. 2020;221(Supplement 1):S15-s22. Henrich W, Meckies J, Dudenhausen J, Vogel M, Enders G. Recurrent cytomegalovirus 6. infection during pregnancy: ultrasonographic diagnosis and fetal outcome. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2002;19(6):608-11. Paixão P, Brito MJ, Virella D, Neto MT. Recurrent maternal CMV infection associated 7. with symptomatic congenital infection: results from a questionnaire study in Portugal. BMJ Paediatrics Open. 2019;3(1):e000455. Mamuye Y BN, Delayehu B, Mekonen G Seroepidemiology study of CMV and Rubella 8. among pregnant women at St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia. . Ethiop J Health Sciences. 2016;26:427. Maingi Z, Nyamache AK. Seroprevalence of Cytomegalo Virus (CMV) among pregnant 9. women in Thika, Kenya. BMC research notes. 2014;7:794-. 10. Khairi S, Intisar K, Enan K, Ishag M, Baraa A, Ali Y. Seroprevalence of cytomegalovirus infection among pregnant women at Omdurman Maternity Hospital, Sudan. Journal of Medical Laboratory and Diagnosis. 2013;4(4):45-9. Mhandire D, Rowland-Jones S, Mhandire K, Kaba M, Dandara C. Epidemiology of 11. Cytomegalovirus among pregnant women in Africa. Journal of infection in developing countries. 2019;13(10):865-76. 12. Bates M, Brantsaeter AB. Human cytomegalovirus (CMV) in Africa: a neglected but important pathogen. Journal of virus eradication. 2016;2(3):136-42. Ross SA, Fowler KB, Ashrith G, Stagno S, Britt WJ, Pass RF, et al. Hearing loss in children 13. with congenital cytomegalovirus infection born to mothers with preexisting immunity. The Journal of pediatrics. 2006;148(3):332-6. 14. Bates M, Brantsaeter AB. Human cytomegalovirus (CMV) in Africa: a neglected but important pathogen. Journal of virus eradication. 2016;2(3):136-42. Fowotade A, Okonko IO, Agbede OO, Suleiman ST. High seropositivity of IgG and IgM 15. antibodies against cytomegalovirus (CMV) among HIV-1 seropositive patients in Ilorin, Nigeria. African health sciences. 2015;15(1):1-9.

BMJ Open

2		
3	387	16. Ray K, Mahajan M. Seroprevalence of cytomegalovirus antibodies in patients attending
4	388	STD and antenatal clinics. J Commun Dis. 1997;29(2):85-90.
5	389	17. Mhandire D, Duri K, Kaba M, Mhandire K, Musarurwa C, Chimusa E, et al.
7	390	Seroprevalence of Cytomegalovirus Infection Among HIV-Infected and HIV-Uninfected Pregnant
8	391	Women Attending Antenatal Clinic in Harare, Zimbabwe, Viral immunology, 2019:32(7):289-95.
9	392	18 Chibwe F. Mirambo MM. Kibunrwa A. Mshana SF. Magnitude of the Cytomegalovirus
10	393	infection among pregnant women attending antenatal clinics in the city of Mwanza. Tanzania
11 12	301	BMC research notes 2017:10(1)://89
12	205	10 Hamdan HZ Abdelbagi JE Nasser NM Adam L Serenrovalence of extemogralovirus and
14	292	rubella among prognant women in western Sudan Virelegy journal, 2011;9:217
15	390	20 Kamal N. Matually L. Camaa N. Savad Ahmad WA. Latfi M. Younis S. Brimany
16	397	20. Kamel N, Metwally L, Gomaa N, Sayed Anmed WA, Lotti M, Younis S. Primary
17	398	cytomegalovirus infection in pregnant Egyptian women confirmed by cytomegalovirus IgG
18	399	avidity testing. Medical principles and practice : international journal of the Kuwait University,
19 20	400	Health Science Centre. 2014;23(1):29-33.
20	401	21. Gyselaers W, Jonckheer P, Ahmadzai N, Ansari M, Carville S, Dworzynski K, et al. What
22	402	are the recommended clinical assessment and screening tests during pregnancy? Good Clinical
23	403	Practice (GCP) Brussels: Belgian Health Care Knowledge Centre (KCE). 2015. KCE Reports 248.
24	404	KCE Reports. 2017;248.
25	405	22. Vaudry W, Rosychuk RJ, Lee BE, Cheung PY, Pang X, Preiksaitis JK. Congenital
20 27	406	cytomegalovirus infection in high-risk Canadian infants: Report of a pilot screening study. The
28	407	Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies
29	408	infectieuses et de la microbiologie medicale. 2010;21(1):e12-9.
30	409	23. Revello MG, Gerna G. Diagnosis and management of human cytomegalovirus infection
31	410	in the mother, fetus, and newborn infant. Clinical microbiology reviews, 2002:15(4):680-715.
32	411	24. Maingi Z. Nyamache AK. Seroprevalence of Cytomegalo Virus (CMV) among pregnant
33 34	412	women in Thika, Kenva, BMC research notes, 2014:7:794
35	413	25 Kolo B. Umoh V. Jatau F. Ella F. Seronrevalence of cytomegalovirus among antenatal
36	110	natients attending primary health centres in some parts of Kaduna State, Nigeria, SAIFB
37	/15	2013-3(1)-43-8
38	415 116	2613,5(1),45 0.
39 40	410	Soroonidomiological Survey and Intrautoring Transmissions, Journal of microbiology and
40 41	417	biotochoology 2017:27/E):1005 0
42	418	Diolectificity, 2017,27(5).1005-9.
43	419	27. Yeron W, Aminu W, Wusa B. Seroprevalence of cytomegalovirus infection amongst
44	420	pregnant women in Kaduna state, Nigeria. Airican Journal of Clinical and Experimental
45	421	Microbiology. 2015;16(1):37-44.
46 47	422	28. Aljumaili ZKM, Alsamarai AM, Najem WS. Cytomegalovirus seroprevalence in women
47	423	with bad obstetric history in Kirkuk, Iraq. Journal of infection and public health. 2014;7(4):277-
49	424	88.
50	425	29. Wang C, Dollard SC, Amin MM, Bialek SR. Cytomegalovirus IgM Seroprevalence among
51	426	Women of Reproductive Age in the United States. PloS one. 2016;11(3):e0151996.
52	427	30. Fowler KB, Pass RF. Risk Factors for Congenital Cytomegalovirus Infection in the
53	428	Offspring of Young Women: Exposure to Young Children and Recent Onset of Sexual Activity.
54 55	429	Pediatrics. 2006;118(2):e286-e92.
56		
57		
58		24
59		Ear poor rovious only http://bmiopon.hmi.com/site/phout/swidelines.yhtml
60		i or peer review only - nitp.//binjopen.binj.com/site/about/guidelines.xittini

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

31. Cannon MJ, Hyde TB, Schmid DS. Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol. 2011;21(4):240-55. 32. Pass RF, Hutto C, Ricks R, Cloud GA. Increased rate of cytomegalovirus infection among parents of children attending day-care centers. The New England journal of medicine. 1986;314(22):1414-8. 33. Hyde TB, Schmid DS, Cannon MJ. Cytomegalovirus seroconversion rates and risk factors: implications for congenital CMV. Rev Med Virol. 2010;20(5):311-26. Tookey PA, Ades AE, Peckham CS. Cytomegalovirus prevalence in pregnant women: the 34. influence of parity. Archives of disease in childhood. 1992;67(7 Spec No):779-83. Pitlick MM, Orr K, Momany AM, McDonald EL, Murray JC, Ryckman KK. Determining the 35. prevalence of cytomegalovirus infection in a cohort of preterm infants. Journal of neonatal-perinatal medicine. 2015;8(2):137-41. 36. Shakya S, Thingulstad S, Syversen U, Nordbø SA, Madhup S, Vaidya K, et al. Prevalence of Sexually Transmitted Infections among Married Women in Rural Nepal. Infectious Diseases in Obstetrics and Gynecology. 2018;2018:4980396. Staras SA, Flanders WD, Dollard SC, Pass RF, McGowan JE, Jr., Cannon MJ. Influence of 37. sexual activity on cytomegalovirus seroprevalence in the United States, 1988-1994. Sexually transmitted diseases. 2008;35(5):472-9. Adachi K, Xu J, Yeganeh N, Camarca M, Morgado MG, Watts DH, et al. Combined 38. evaluation of sexually transmitted infections in HIV-infected pregnant women and infant HIV transmission. PloS one. 2018;13(1):e0189851.

Page 27 of 27

	STR	거, 특 것 OBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cress-sectional studies</i>	
Section/Topic	ltem #	Recommendation	Reported on page
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Obiectives	3	State specific objectives, including any prespecified hypotheses	5
Methods	-		
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposured follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modified. Give diagnostic criteria, if	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which are chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	7

 <u>a</u>

GEZ-LTA

		BMJ Open by copyrig	Page 2
Participants	13*	a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed 같 요	9
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram 5	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information of exposures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their presisent (eg, 95% confidence	13
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning fur the period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analy 🛓 🛱	
Discussion		ning m t	
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-18
Generalizability	21	Discuss the generalisability (external validity) of the study results	18
Other information		ar tr	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable for see original study on	19
-		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine are realized of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.s gobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Seroprevalence and associated factors of maternal cytomegalovirus in Southern Ethiopia: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051390.R2
Article Type:	Original research
Date Submitted by the Author:	17-Aug-2021
Complete List of Authors:	zenebe, MENGISTU; Hawassa University College of Medicine and Health Sciences, medical laboratory sciences; Ghent University Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences Mekonnen, Zeleke; Jimma University College of Public Health and Medical Sciences, School of Medical Laboratory Sciences; Loha, Eskindir; University of Bergen; Chr Michelson Institute Padalko, Elizaveta; Ghent University, Department of Diagnostic Sciences; Ghent University Hospital, Department of Diagnostic Sciences
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Public health, Infectious diseases, Global health
Keywords:	OBSTETRICS, Diagnostic microbiology < INFECTIOUS DISEASES, Maternal medicine < OBSTETRICS, Tropical medicine < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2
2
1
4
5
6
7
, 0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
27
22
23
24
25
26
20
27
28
29
30
50
31
32
33
34
25
35
36
37
38
20
29
40
41
42
43
43
44
45
46
47
40
48
49
50
51
52
52
53
54
55
56
50
5/
58
59
60
00

1	Seroprevalence and associated factors of maternal
2	cytomegalovirus in Southern Ethiopia: a cross-sectional study
3	*Mengistu Hailemariam Zenebe ^{1, 2, 3} , Zeleke Mekonnen ² , Eskindir Loha ^{4, 5} and Elizaveta Padalko ^{3,}
4	6
5	¹ School of Medical Laboratory Sciences, Hawassa University college of Medicine and Health
6	Sceinces, Hawassa, Ethiopia
7	² School of Medical Laboratory Sciences, Jimma University Institute of Health
8	Jimma University, Jimma, Ethiopia
9	³ Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
10	⁴ Centre for International Health, University of Bergen, Bergen, Norway
11	⁵ Chr. Michelson Institute, Bergen, Norway
12	⁶ Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
13	
14	*Corresponding author, mailing address: School of laboratory science Hawassa University
15	P.o.Box=1560, Hawassa, Ethiopia, Phone: (+251913641103), E-mail address:
16	mengamariam@yahoo.com or mengemariamzenebe@gmail.com
17	
18	

1	
2	
3	
4	
5	
6	
7	
8	
g	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
J∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
<u>4</u> 2	
42 12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
אנ רר	
55	
56	
57	
58	
59	

Abstract 19 **Objectives** The aim of this study was to assess the seroprevalence and associated factors of CMV 20 21 among pregnant women in Southern Ethiopia. Design Cross-sectional study. 22 Setting The study was conducted in Hawassa University comprehensive and specialized hospital. 23 Hawassa, Southern Ethiopia. 24 25 **Participants** A total of 600 consecutive pregnant women attending the delivery ward were recruited for the study from August to October 2020. 26 Outcome measures The study assessed the rate of maternal anti-CMV IgG and IgM antibodies. 27 28 The association of obstetric history, sociodemographic and behavioural characteristics with seropositivity of CMV was also evaluated based on the collected data using structured questioners. 29 30 **Results** Seropositivity for CMV IgM antibodies was 8.2% (49/600) (95% CI: 6 -10.5%), whereas the CMV IgG was 88.7% (532/600), (95% CI: 89.5 - 94.0%). Seroprevalence of CMV IgM was 31 higher in women of older age, currently unmarried, having nursery schooled children and with any 32 of the detected curable sexually transmitted infections (STIs). While seroprevalence of CMV IgG 33 was significantly associated only with women having nursery schooled children. Seroprevalence 34 was not significantly associated with previous adverse pregnancy outcome, gravidity, being a child 35 36 daycare occupant mother, and newborn birth weight. Conclusion In the present study, we identified a high rate of CMV IgM and CMV IgG 37 seroprevalence among pregnant women in southern Ethiopia. Given that there is no existing CMV 38 39 diagnosis, special attention should be designed to pregnant women in parallel to the existing antenatal care facility. Besides, training health care professionals will support awareness 40 conception among pregnant women concerning the sequels of CMV infection during pregnancy. 41

1 ว		
2 3 4 5	42	
6 7 8	43 44	Strengths and limitations of this study
10 11	45	• This study is the first to present the seroprevalence of maternal cytomegalovirus from the
12 13	46	Southern region in Ethiopia and that provides the first awareness in medical, governmental
14 15 16	47	and societal stakeholders.
17 18	48	• The study assessed both anti-CMV IgG and anti-CMV IgM seropositivity that can predict
19 20 21	49	the possible threat of congenital CMV infection to the developing fetus.
21 22 23	50	• In this study, the factors associate with the level of seropositivity were explored among
24 25	51	pregnant women.
26 27	52	• We were unable to distinguish primary from secondary (reinfection or reactivation) CMV
28 29 30	53	infection as there was no baseline data to decide about seroconversion at the beginning of
31 32	54	pregnancy.
33 34	55	• Being a hospital-based study, our finding will not be representative of all pregnant mothers
35 36 37	56	in the locality since a significant portion of mothers may not deliver in the hospital.
38 39 40	57	
41 42	58	
43 44		
45 46 47	59	
48 49 50	60	
51 52 53	61	
54 55 56 57	62	
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

63 Introduction

Cytomegalovirus (CMV) is the most common infection during pregnancy that poses the risk of congenital CMV infections (cCMV) worldwide. (1) In immunocompetent hosts, primary CMV infection may be asymptomatic or may cause mild self-limiting disease with fever, headaches, and myalgia and after primary infection, the virus remains latent. Latency following a primary infection may relapse by periodic reactivations that give rise to recurrent infections later in life when the body immunity is suppressed. (2)

During pregnancy CMV infection or reactivation is mostly asymptomatic, however, it might lead to fetal infection and cCMV syndromes. (3) Congenital CMV infection of the fetus of mothers having pre-existing anti-CMV antibodies is also possible due to the risk of reactivation or reinfection with a different strain of CMV during pregnancy. (4) Therefore unlike previous perception the high maternal CMV seroprevalence in developing countries like Ethiopia does not eliminate the threat of cCMV infection of the newborn. Worldwide cCMV following nonprimary maternal infections is more common in individuals of lower socioeconomic backgrounds. (5) In addition, due to a high seroprevalence of CMV in the community of the developing countries, there would be a rare possibility of recurrent CMV infection as a result of reinfection. (6) As to the report from Portugal, maternal recurrent infections can have a significant impact on cCMV infections. (7)

So far, previous studies have shown that maternal CMV seroprevalence rates ranging from low (50 to 70%) in developed countries to high (> 70%) in developing countries. (1) Presently, data on the prevalence of maternal CMV and associated risk factors are scanty in Ethiopia. The only

available study conducted in Ethiopia had reported the seroprevalence of 15.5% for CMV IgM and 88.6% for CMV IgG.(8)

In Africa, the highest prevalence of CMV IgG was estimated to range from 72 - 97.5% (9, 10) and of CMV IgM antibodies to range from 0-15.5%. (11) However, for several reasons CMV infections among pregnant women in Africa have been overlooked. (12) One of the main reasons for inattention is the perception that being infected in early childhood endures immunity for subsequent infection, so maternal reactivation or reinfection during pregnancy is unlikely to cause severe congenital infection. (13) However, in pregnant women the immune system is somehow suppressed. So ignoring maternal CMV and the subsequent effect of cCMV infection in Africa is short-sighted; furthermore, the possible confounding effects of HIV infection, malnutrition, tuberculosis, and a general higher disease burden of the continent must be taken into account. (14)

The objective of the study was to assess the seroprevalence of CMV IgM and IgG among pregnant women and determine associated factors in Southern Ethiopia. Information regarding the maternal prevalence of CMV and associated risk factors is almost absent in Ethiopia. Being the first study in the Southern region of Ethiopia, the finding will deliver the first awareness in medical, governmental and societal stakeholders in the region. Moreover, the study will attract health care professional attention and improve antenatal care in this domain. Indeed, it will generate awareness in the community, mainly pregnant women, regarding the consequence of CMV during pregnancy in Ethiopia.

105 Study design and setting

From August to October 2020, a cross-sectional study was conducted among pregnant women who came for delivery in the obstetrics ward at Hawassa University Comprehensive and Specialized Hospital (HU-CSH), Ethiopia. The HU-CSH is one of the teaching hospitals serving as a referral centre for both public and private hospitals for more than 5 million inhabitants in the Southern Region and the neighbouring region of Ethiopia. The hospital has around 500 beds, accommodating more than 2,500 pregnant women for antenatal care (ANC) visits and conducting about 5,400 deliveries annually.

Participants

All pregnant women were recruited regardless of gestational age however, a mother with any critical illness (such as airway obstruction, current history of seizures or unconsciousness) that would deter them from participation in the study were excluded. Interrelated with the first phase of this project (15), where the initial 350 pregnant women had been tested for curable STI (C. trachomatis, N. gonorrhoeae and T. vaginalis) using GeneXpert (Xpert CT/NG and Xpert TV assays, Cepheid, Sunnyvale, California, USA). In this second phase of the study, by including those initially enrolled 350 pregnant women, a total of 600 consecutively enrolled pregnant women participated. A midwife at the obstetric ward provided general information about the study to all pregnant women before recruitment.

Sample size and sampling

The sample size was calculated based on the single population proportion formula by considering 15.5% prevalence of maternal anti-CMV IgM from a previous study conducted in central Ethiopia (8), a 3% margin of error and a 95% confidence level. Thus, the minimum sample size was 560. However, a total of 600 women were consecutively enrolled to signify the findings of seroprevalence of cytomegalovirus among pregnant women in the study settings. Sampling was based on convenience and continued until a total of 600 participants were reached. If there is non-response during data collection, the study will be solved by taking subsequent participants until the intended sample size is achieved.

Data collection

Socio-demographic, obstetric and behavioral data

Trained midwives at the obstetric ward provided general information about the study to pregnant women who came for delivery. Pregnant women agreeing to join in the study were interviewed using a structured questionnaire translated in Amharic, the language spoken by most people in the study area. The translated questionnaire was pre-tested on random mothers at the antenatal clinic to ensure the validity and feasibility of the questions as conducted in similar studies and the principal investigator carefully checked the process of each data collection every day. Information related to socio-demographic characteristics (e.g., age, marital status, and educational level), obstetric history, and behavioural data were collected.

Sample collection and storage

The midwife-nurse aseptically collected a 3 ml blood sample from each subject. The collected samples were transported to the HU-CMHS microbiology laboratory within 12 hours of collection

and the processed serums were kept at -20 C⁰ until transported. Then frozen samples at -20°C were transported on dry ice packs to the testing laboratory.

Laboratory methods

Testing was performed in Belgium, Ghent University hospital, department of laboratory medicine, using a commercially available enzyme immunoassay (ELISA) kit (EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany) for anti-CMV IgG and IgM according to the manufacturer's instructions. The sensitivity amounted to 99.2%, with a specificity of 100%. Results were evaluated semi-quantitatively by calculating a ratio of the extinction value of the patient sample over the extinction value of the calibrator optical density at 450 nm. Seropositivity was defined according to the guidelines given by the manufacturer, CMV negative when the ratio cut off value was < 0.8, the borderline between 0.8 and 1.1, and positive if >1.1 for both IgG and ich IgM.

Ethical considerations

Ethical approval from all of the appropriate institutional review boards was obtained. The ethics (CMHS/283/2012), review committee of Hawassa University Jimma University (IHRPGD/458/2020), National Health Research Ethics Review Committee (SRA/14.1/ 144483/2020) Ethiopia, and Ghent University (PA2019-038/BC-08458) Belgium, approved the study.

The study was conducted in accordance with the Declaration of Helsinki, the significance of the study was clarified to each study participant and parents of a few minorities before obtaining informed consent. Permission attained from the minor (under the age of 18 years) participants

parent or legal guardian according to the Ethiopian national research Ethics review guideline.
Eventually, consent was granted from each participant including those who were under the age of
18 years with a participant confirmatory agreement to participate in the study. Confidentiality of
the participant's information was ensured by anonymous typing.

170 Data analysis

Descriptive statistics were used to characterize the socio-demographic and obstetric and medical characteristics of the participants. We evaluated the seroprevalence of CMV and associated factors using a logistic regression model. Bivariate comparisons using chi- square or Fisher's exact test where suitable were used to examine the relationships between participant characteristics and CMV test result. Finally, multivariable logistic regression was used to identify characteristics independently associated with serostatus of CMV and adjusting for other factors. Variables with a significant level of <0.2 were included in the final model. P-value <0.05 is considered statistically significant. SPSS software version 20.0 (SPSS Inc. Chicago, IL, USA) was used for all analyses.

Patient and public involvement

180 No patients or the public were directly involved in the design, conduct, reporting or dissemination181 plans of this research.

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Participants

Six hundred pregnant women were assessed for seroprevalence of CMV and all women met the inclusion criteria and enrolled in the study, generating a 100% response rate. The mean of maternal age was $27.0 \pm (SD) 5.2$, with a ranging between 17 and 41. More than one-third of the study participant were under the age of 25. About one-fourth of the women were primigravida. Out of the 600 participant, 84 (14%) were currently unmarried, 475 (79.2%) were residing in urban setting, 377 (62%) were above or at secondary level of education. Forty-eight (8%) of the newborns were under-weighted (<2.5 Kg), and 64 (10%) of the births were preterm. Regarding STIs test result, 51 (14.6%) pregnant women were tested positive for any of curable STIs (Table 1).

In this study, 95.8% of mothers had no knowledge of congenitally transmitted infection or the associated risks in pregnancy and 8.6% of them had previous adverse pregnancy outcome. The chi- squire analysis showed that, seropositivity for CMV IgM significantly associated (p<0.05) with marital status, gestational age, having nursery school baby in the household, sharing a cup with children and having any of detected curable STIs. However, there was no significant association with birth weight, gravidity and having previous adverse pregnancy outcome i.e. preterm birth, stillbirths and early neonatal death (Table 1).

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

203	Table 1 Maternal characteristics and associated factor with CMV IgM seropositivity in
204	outhern Ethiopia

Characteristics	Total (N=600)	IgM-Positive	IgM-Negative	p-value †
	n (%)	(n=49) n (%)	(n=551) n (%)	
Age of mothers (years)				
<25	233 (38.8)	14 (28.6)	219 (39.7)	0.148
25-29	162 (27.0)	14 (28.6)	148 (26.9)	
30- 35	170 (28.3)	15 (30.6)	155 (28.1)	
>35	35 (5.8)	6(12.2)	29 (5.3)	
Marital status				
Married	516 (86.0)	37 (75.5)	479 (86.9)	
Currently unmarried	84 (14.0)	12 (24.5)	72 (13.1)	0.027
Residence	5			
Urban	475 (79.2)	44 (89.8)	431 (78.2)	0.056
Rural	125 (20.8)	5 (10.2)	120 (21.8)	
ANC follow up during pregnancy	6			
Yes	576 (96.0)	48 (98.0)	528 (95.8)	
no	24 (4.0)	1 (2.0)	23 (4.2)	0.712
Employed as daycare worker				
Yes	40 (6.7)	6 (12.2)	34 (6.2)	0.126
No	560 (93.3)	43 (87.8)	517 (93.8)	
Employed as health care				
Yes	32 (5.3)	6 (12.2)	26 (4.7)	0.055
no	568 (94.7)	43 (87.8)	525 (95.3)	
Education				
Primary and below	223 (37.2)	13 (26.5)	210 (38.1)	0.108
Secondary and above	377 (62.8)	36 (73.5)	341 (61.9)	
Gestational age				
Term	536 (89.3)	36 (73.5)	500 (90.7)	
Preterm	64 (10.7)	13 (26.5)	51 (9.3)	< 0.001
Birth weight				
<2.5 Kg	48 (8.0)	3 (6.1)	45 (8.2)	0.789
>2.5 Kg	552 (92.0)	46 (93.9)	506 (91.8)	
Gravidity				
Primigravida	147 (24.5)	14 (28.6)	133 (24.1)	0.489
Multigravida	453(75.5)	35 (71.4)	418 (75.9)	

1	
2	
4	
5	
6 7	
8	
9 10	
10	
12	
13 14	
15	
16 17	
18	
19	
20 21	
22	
23 24	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	
42	
43	
44 45	
46	
47 48	
49	
50	
51 52	
53	205
54 55	206
56	207
57	
58	

Previous adverse pregnancy outcome *				
Yes	39 (8.6)	2 (5.7)	37 (8.9)	0.756
No	414 (91.4)	33 (94.3)	381 (91.1)	
Knowledge on congenitally transmitted				
infections				
Yes	25 (4.2)	1 (2.0)	24 (4.4)	
No	575 (95.8)	48 (98.0)	527 (95.6)	0.712
Under-five children in the household				
Yes	396 (66.0)	31 (63.3)	365 (66.2)	0.673
no	204 (43.0)	18 (36.7)	186 (33.8)	
Daycare or Nursery school baby in the				
household				
Yes	259 (43.2)	31 (63.3)	228 (41.4)	0.003
no	341 (56.8)	18 (36.7)	323 (58.6)	
Sharing feeding cup with children				
Yes	107 (17.8)	14 (28.6)	93 (16.9)	0.040
no	493 (82.2)	35 (71.4)	458 (83.1)	
Sharing eating utensil with children	6			
Yes	88 (14.7)	8 (16.3)	80 (14.5)	0.732
No	512 (85.3)	41 (83.7)	471 (85.5)	
Sharing teeth brush with children		P		
Yes	42 (7.0)	3 (6.1)	39 (7.1)	0.999
No	558 (93.0)	46 (93.9)	512 (92.9)	
N.gonorrhoeae detected (n=350)				
Yes	15 (4.3)	3 (10.0)	12 (3.8)	0.128
No	333 (95.7)	27 (90.0)	306 (96.2)	
C. trachomatis detected (n=350)				
Yes	29 (8.3)	5 (16.7)	24 (7.5)	0.089
No	319 (91.7)	25 (83.3)	294 (92.5)	
T. vaginalis detected (n=350)				
Yes	11 (3.1)	2 (6.9)	9 (2.8)	0.241
No	335 (96.8)	27 (93.1)	308 (97.2)	
Any of curable STI detected (n=350)				
Yes	51 (14.6)	10 (33.3)	41 (12.8)	0.005
No	299 (85.4)	20 (66.7)	279 (87.2)	

*previous adverse pregnancy includes; early neonatal death, stillbirth and preterm birth : STI; Sexually transmitted infections

[†] Chi-square

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA

Erasmushogescl

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Seropositivity of CMV IgM antibodies was 8.2% (49/600) (95% CI: 6 -10.5%), whereas seroprevalence of CMV IgG was 88.7% (532/600), (95% CI: 89.5 - 94.0%). Of 532 CMV IgG positive women, 483 (80.4%) were negative for IgM. Among all pregnant women, 68 (11.4%) were tested negative for both anti-CMV IgG and IgM, and none showed anti-CMV IgG negativity but IgM positivity (Table 2).

Table 2 Cytomegalovirus IgM and IgG test result of pregnant women

	Anti CMV IgG antibody r	Total n (%)	
Anti CMV IgM antibody	Positive	Negative	
Positive	49 (8.2)	0 (0)	49 (8.2)
Negative	483 (80.4)	68(11.4)	551 (91.8)
Total	532 (88.7)	68(11.4)	600

CMV seropositivity and associated factors

In bivariable analysis, seropositivity of CMV IgM was more common in elder women (>35)compared to the youngest age group (≤ 25), in women who were currently unmarried, giving preterm birth, sharing a feeding cup with children or having nursery schooled children. Moreover women were positive for any of curable STIs also had a higher seroprevalence of CMV compared to those negative for STIs (Table 3).

Furthermore, in multivariable logistic regression, being over the age of 30 years had higher odds for CMV IgM seropositivity compared to being under 25 (AOR = 4.9, 95% CI: 1.0-23.4), currently

225	unmarried women (AOR = 3.8, 95% CI: 1.7–7.9), preterm birth (AOR = 3.9, 95% CI: 1.5–10.3)
226	and having nursery schooled children (AOR = 2.7 , 95% CI: $1.1-6.4$). Mothers with STIs had an
227	association with seroprevalence (AOR = 4.1 , 95% CI: $1.6-10.6$) compared to mothers who were
228	diagnosed negative for STIs.

229 Maternal seroprevalence was not significantly associated with residence, education level, 230 occupation, being employed in a child daycare centre, or being a health care worker (Table 3).

Table 3. Unadjusted and adjusted associated factors of maternal CMV IgM seropositivity in

232 Southern Ethiopia

Characteristics	Un adjusted *	Adjusted *	Adjusted *	
	OR 95% CI)	P-value	OR (95% CI)	P-value
Age of mothers (years)				
<25	1		1	
25-29	1.5 (0.7 -3.2)	0.318	1.2 (0.4 – 4.0)	0.739
30-35	1.5 (0.7 -3.2)	0.283	3.0 (1.0 - 9.0)	0.048
>35	3.2 (1.2-9.1)	0.026	4.9 (1.0 - 23.4)	0.047
Marital status				
Married	1		1	
Currently unmarried	2.2 (1.1 -4.3)	0.030	3.8 (1.3 -11.2)	0.015
Residence				
Urban	2.5 (1.0 -6.3)	0.064	2.3 (0.7 -7.9)	0.171
Rural	1		1	
Daycare worker				
Yes	2.1 (0.8 -5.3)	0.110	1.1 (0.2-5.4)	0.857
No	1		1	
Health care worker				
--------------------------------	-----------------	---------	-----------------	--------
Yes	2.8 (1.1 - 7.2)	0.031	1.2 (0.2 – 7.4)	0.841
no	1		1	
Education				
Primary and below	0.6 (0.3 -1.1)	0.111	0.7 (0.3 -1.8)	0.475
Secondary and above	1		1	
Gestational age				
Term	1		1	
Preterm	3.5 (1.8 – 7.1)	< 0.001	3.9 (1.5 -10.3)	<0.006
Daycare or Nursery school baby				
Yes	2.4 (1.3 – 4.5)	0.004	2.7 (1.1 – 6.4)	0.027
no	1		1	
Sharing a cup with children				
Yes	2.0 (1.1 - 3.8)	0.044	2.2 (0.9 - 5.4)	0.074
no	1			
Any of curable STIs (n=350)				
Yes	3.4 (1.5-7.8)	0.004	4.1 (1.6- 10.6)	0.003
No	1			

233 * Logistic regression

Regarding CMV IgG seropositivity, women within the age group of 30-35 have shown a significantly higher risk of CMV IgG positivity compared to women of <25 years in bivariable analysis. However, the detected significant risk in the bivariable analysis in this study is not sustained in the multivariable analysis. The discrepancy possibly due to the fact that most of the exposure to CMV infection were in early childhood in developing countries like Ethiopia so that CMV IgG seroprevalence seem comparable in all age category. In addition, participants might

have a similar type of behaviour at different ages. Furthermore, women having primary or lower
educational levels are associated with a higher risk of CMV IgG seropositivity than having
secondary or above educational levels in bivariable analysis (OR 1.7). But not associated in
adjusted analysis this might be due to the common exposure and awareness level of the study
participants.

In this study, women having nursery schooled children shown association both in bivariable and multivariable analysis (AOR = 1.8, 95% CI: 1.0-3.0). However, the other maternal characteristic were not associated with CMV IgG seropositivity (Table 4).

Table 4. Unadjusted and adjusted associated factors of maternal CMV IgG seropositivity in

249 Southern Ethiopia

Characteristics	Un adjusted *	Adjusted *		
	OR 95% CI)	P-value	OR (95% CI)	P-value
Age of mothers (years)	2	7		
<25	1			
25-29	1.2 (0.7 -2.3)	0.482	1.0 (0.5- 1.9)	0.991
30-35	2.2 (1.1 -4.3)	0.028	1.8 (0.9- 3.8)	0.095
>35	1.3 (0.4–3.9)	0.663	0.9 (0.3- 1.0)	0.877
Marital status				
Married	1			
Currently unmarried	0.8 (0.37 – 1.7)	0.573		
Residence				
Urban	0.8 (0.4-1.5)	0.493		
Rural	1			

Daycare worker				
Yes	0.9 (0.3- 2.3)	0.810		
No	1			
Health care worker				
Yes	0.9 (0.3 – 2.6)	0.831		
no	1			
Education				
Primary and below	1.7 (1.0 – 2.8)	0.041	0.6 (0.4- 1.0)	0.037
Secondary and above	1			
Gestational age				
Term	1			
Preterm	0.9 (0.4-1.9)	0.756		
Daycare or Nursery school baby				
Yes	1.9 (1.1 – 3.1)	0.017	1.8 (1.0- 3.0)	0.045
no	1			
Sharing a cup with children				
Yes	1.1 (0.6 – 2,3)	0.705		
no	1			
Any of curable STIs (n=350)				
Yes	0.8 (0.3 – 1,9)	0.578		
No	1	~		

250 * Logistic regression

251 Discussion

In this study an overall seroprevalence of 8.2% for CMV IgM and 88.7% for CMV IgG were detected among pregnant women in southern Ethiopia. Factors associated with CMV IgM seropositivity were age, marital status, the presence of curable STIs and sharing a cup with children. A statistically significant association was also observed between CMV seropositivity and preterm delivery.

The reported seropositivity of CMV IgG (88.7%) in this study was comparable to a result found in previous study of pregnant women in central Ethiopia (88.5%) however, a substantially higher rate of CMV IgM (15.5%) was documented compared to our finding. (8) Furthermore, seropositivity of CMV IgG in our study was in line with a review done in Africa, with ranges from 60% to 100%. (11) Seropositivity rates of 77.3% for IgG and 8.1% for IgM in Kenya, (9) 93% for IgG and 11.1% for IgM in Nigeria,(16) 94% for IgG and 8.5% for IgM in Tanzania (17) were also comparable to our finding.

In our study seroprevalence of CMV IgM is in concordance with several African studies.(9, 16-18) However, our rate was considerably higher when compared to 0.4% in Tanzania, (19) 2.5% in Sudan, (20), and 7% in Egypt. (21) In the absence of maternal screening this high rate is alarming for policy makers. By far in most of the developed countries, pregnant women are screened for CMV due to the panic effect and consequence to the developing fetus and newborn. (22, 23) However, in most developing countries including Ethiopia, maternal CMV still lacks awareness, is overlooked and not diagnosed at least for pregnant women. (24) The high rate of CMV IgM may not only reflect primary infection but might also be attributed to reinfection or reactivation of CMV during pregnancy. So the reported high seropositivity in this study point to the existing negligence

and the need to start screening to detect pregnant women at risk for congenital transmission ofCMV.

Earlier studies have shown that there was considerable debate regarding the relationship between maternal age and CMV seroprevalence. In this study, elder age had significant association with CMV IgM seroprevalence but no association observed in CMV IgG. The same finding was reported in Kenya, (25), in Nigeria, (26) and Tanzania. (19) However, a study in Ethiopia, (8) in Egypt (21) Sudan, (20), China, (27) and in Nigeria (28) have reported that age had no association with maternal CMV infection. Unlike our finding, studies in Iraq a high rate of CMV IgM in young women was reported (29), whereas, in USA CMV IgM seroprevalence varied by age with the highest among younger and lower among those elder age was reported. (30) The increment of association of CMV IgM seroprevalence with age in this study may indicate the more lifetime episodes exposure of elders than youngsters or might be the existence of previous infection which can probably reactivated in the current pregnancy. In fact, the observed difference in CMV IgM seroprevalence by age may be useful to realize the risk of cCMV transmission and are useful for ascertaining target populations for intervention to reduce congenital CMV transmission. (30)

On the other hand, mother who have nursery schooled children among households has shown a significant association with seroprevalence of both CMV IgM and IgG. For pregnant women, the predictable source of CMV infection is young children mainly exposure to nursery schooled children. (31) Children easily get infected in school and frequently shed CMV in their saliva or urine for many years continuously that could spread readily even in a preschool setting. (32) This places seronegative pregnant women who have a young child in the home or in day care at increased risk of seroconversion. (33, 34) Susceptibility to the acquisition of CMV infection is

high possibly through the direct contact with contagious secretions from their children essentiallyin a situation of poor hygienic practice like in Ethiopia. (35)

Among candidate predictors for maternal CMV seropositivity, occupations like being health care worker or child day-care worker; being multigravida, lower educational level and having other children at home did not shown any association. However, there was significant association for those with preterm delivery. Although, maternal CMV infection may result in preterm delivery, its isolated impact could not be assessed since we did not study other potential confounding factors.(36)

Likewise, CMV IgM seropositivity was found to be significantly associated with STIs detected at delivery and currently being unmarried. Mothers who were positive for any of curable STIs had a four-time CMV IgM seropositivity. It is also reported that STIs including CMV to be more common in unmarried pregnant women.(31, 35, 37) Although cytomegalovirus is a virus that is transmitted through many body fluids, sexual transmission from a seropositive male partner is an additional established route by which women may be infected with CMV.(38) Indeed, it is somehow expected that sexual transmission is also responsible for the reinfection of seropositive mothers with different virus strains in high-seroprevalence populations.(39)

Although, CMV IgG avidity testing is a valuable laboratory tool for distinguishing primary from non-primary CMV infection, an avidity test was not performed in this study. Hence, this study lacks differentiation of CMV IgM positivity of either primary or non-primary (reinfection or reactivation) as we collected samples at the end of the pregnancy period that avidity test will not be suitable. Moreover, it was a hospital-based study and not representative of all pregnant mothers in the locality since a significant portion of mothers may not deliver in the hospital. We

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

> 317 lack also appropriate risk factors assessment tool due to the cross-sectional nature of the study, 318 hence a more representative large-scale survey is needed to identify possible risk factors 319 prospectively. Furthermore, this is the first study from the Southern region in Ethiopia and that 320 makes the first awareness in medical, governmental and societal stakeholders. Thus, more studies 321 may need to be accomplished before the introduction of appropriate measures.

322 Conclusion

In this study, we identified a high rate of both CMV IgM and CMV IgG seropositivity among pregnant women in southern Ethiopia. The presence of curable STIs, elder age and unmarried women showed a significant association with CMV IgM seropositivity. Furthermore, having nursery schooled children showed a significant association with CMV IgM and IgG seropositivity. Given that there is no existing CMV diagnostic facility, special attention should be designed to pregnant women in parallel to the existing antenatal care service. Besides, training health care professionals will support awareness conception for pregnant women concerning the sequels of CMV infection during pregnancy.

Acknowledgments: We thank the HU-CSH microbiology laboratory staffs for the provision of all laboratory accommodations during sample processing and storage. We would like to recognise the study participants and a special thanks to midwife nurses at the obstetrics ward of the HU-CSH. Lastly, we want to express our thanks to VLIR-UOS for providing a PhD scholarship.

336 Contributors: MHZ and EP contributed to the study design and conceptualisation. MHZ
337 carried out the laboratory work. MHZ, EL, ZM and EP performed the statistical analysis and

1 2

BMJ Open

2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
~ ' つつ	
∠∠ 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
17	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
55	
54	
55	
56	
57	
58	
59	
60	

interpretation. All authors provided critical review and contributed to the write-up and approved 338 the final version of the manuscript. MHZ had final responsibility to submit for publication. All 339 authors read and amended drafts of the paper and approved the final version. 340 Funding: This research received no specific grant from any funding agency in the public, 341 commercial or not-for-profit sectors. But this study was a PhD work and a PhD Scholarship is 342 supported by the research from the Belgian Development Cooperation through the VLIR-UOS 343 344 network program (University collaboration for better health in Ethiopia (UCBHE). Competing interests: no competing interest 345 Patient consent: The significance of the study was clarified to each study participant and 346 347 parents of a few minorities prior to obtaining permission to participate in the study. Participation 348 was fully voluntary and informed consent was obtained from all participants who were 18 years 349 old or above. Informed consent was also obtained from the parents or legal guardians of the participants who were under the age of 18 years prior to their enrolment in the study. 350 351 Confidentiality of the participant's information was ensured by anonymous typing. Ethics approval: Ethical approval from all of the appropriate institutional review boards was 352 obtained. The ethics review committee of Hawassa University (CMHS/283/2012), Jimma 353 University (IHRPGD/458/2020), National Health Research Ethics Review Committee (SRA/14.1/ 354 355 144483/2020) Ethiopia, and Ghent University (PA2019-038/BC-08458) Belgium, approved the study. The study was conducted in accordance with the Declaration of Helsinki. 356 Data sharing statement: Data are available upon reasonable request. All available data can 357

be obtained by contacting the corresponding author. 358

- Competing interests

> The authors declare that they have no competing interest.

References

1. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The "Silent" Global Burden of Congenital Cytomegalovirus. Clinical microbiology reviews. 2013;26(1):86-102. Nolan N, Halai UA, Regunath H, Smith L, Rojas-Moreno C, Salzer W. Primary 2. cytomegalovirus infection in immunocompetent adults in the United States - A case series. IDCases. 2017;10:123-6. Lazzarotto T, Blázquez-Gamero D, Delforge M-L, Foulon I, Luck S, Modrow S, et al. 3. Congenital Cytomegalovirus Infection: A Narrative Review of the Issues in Screening and Management From a Panel of European Experts. Frontiers in pediatrics. 2020;8(13). Britt WJ. Maternal Immunity and the Natural History of Congenital Human 4. Cytomegalovirus Infection. Viruses. 2018;10(8):405. Mussi-Pinhata MM, Yamamoto AY. Natural History of Congenital Cytomegalovirus 5. Infection in Highly Seropositive Populations. The Journal of infectious diseases. 2020;221(Supplement 1):S15-s22. Henrich W, Meckies J, Dudenhausen J, Vogel M, Enders G. Recurrent cytomegalovirus 6. infection during pregnancy: ultrasonographic diagnosis and fetal outcome. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2002;19(6):608-11. Paixão P, Brito MJ, Virella D, Neto MT. Recurrent maternal CMV infection associated 7. with symptomatic congenital infection: results from a questionnaire study in Portugal. BMJ Paediatrics Open. 2019;3(1):e000455. 8. Mamuye Y BN, Delayehu B, Mekonen G Seroepidemiology study of CMV and Rubella among pregnant women at St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia. . Ethiop J Health Sciences. 2016;26:427. Maingi Z, Nyamache AK. Seroprevalence of Cytomegalo Virus (CMV) among pregnant 9. women in Thika, Kenya. BMC research notes. 2014;7:794-. Khairi S, Intisar K, Enan K, Ishag M, Baraa A, Ali Y. Seroprevalence of cytomegalovirus 10. infection among pregnant women at Omdurman Maternity Hospital, Sudan. Journal of Medical Laboratory and Diagnosis. 2013;4(4):45-9. Mhandire D, Rowland-Jones S, Mhandire K, Kaba M, Dandara C. Epidemiology of 11. Cytomegalovirus among pregnant women in Africa. Journal of infection in developing countries. 2019;13(10):865-76. 12. Bates M, Brantsaeter AB. Human cytomegalovirus (CMV) in Africa: a neglected but important pathogen. Journal of virus eradication. 2016;2(3):136-42.

2		
3	396	13. Ross SA, Fowler KB, Ashrith G, Stagno S, Britt WJ, Pass RF, et al. Hearing loss in children
4	397	with congenital cytomegalovirus infection born to mothers with preexisting immunity. The
5	398	Journal of pediatrics. 2006;148(3):332-6.
7	399	14. Bates M, Brantsaeter AB. Human cytomegalovirus (CMV) in Africa: a neglected but
8	400	important pathogen. Journal of virus eradication. 2016;2(3):136-42.
9	401	15. Zenebe MH, Mekonnen Z, Loha E, Padalko E. Prevalence, risk factors and association
10	402	with delivery outcome of curable sexually transmitted infections among pregnant women in
12	403	Southern Ethiopia. PloS one. 2021;16(3):e0248958.
13	404	16. Fowotade A, Okonko IO, Agbede OO, Suleiman ST. High seropositivity of IgG and IgM
14	405	antibodies against cytomegalovirus (CMV) among HIV-1 seropositive patients in Ilorin, Nigeria.
15	406	African health sciences. 2015;15(1):1-9.
10	407	17. Ray K, Mahajan M. Seroprevalence of cytomegalovirus antibodies in patients attending
18	408	STD and antenatal clinics. J Commun Dis. 1997;29(2):85-90.
19	409	18. Mhandire D, Duri K, Kaba M, Mhandire K, Musarurwa C, Chimusa E, et al.
20	410	Seroprevalence of Cytomegalovirus Infection Among HIV-Infected and HIV-Uninfected Pregnant
21	411	Women Attending Antenatal Clinic in Harare, Zimbabwe. Viral immunology. 2019;32(7):289-95.
22	412	19. Chibwe E, Mirambo MM, Kihunrwa A, Mshana SE. Magnitude of the Cytomegalovirus
24	413	infection among pregnant women attending antenatal clinics in the city of Mwanza. Tanzania.
25	414	BMC research notes. 2017:10(1):489.
26	415	20. Hamdan HZ, Abdelbagi IE, Nasser NM, Adam I, Seroprevalence of cytomegalovirus and
27	416	rubella among pregnant women in western Sudan. Virology journal. 2011:8:217.
20	417	21. Kamel N. Metwally L. Gomaa N. Saved Ahmed WA. Lotfi M. Younis S. Primary
30	418	cytomegalovirus infection in pregnant Egyptian women confirmed by cytomegalovirus IgG
31	419	avidity testing. Medical principles and practice : international journal of the Kuwait University.
32	420	Health Science Centre, 2014:23(1):29-33.
33 34	421	22. Gyselaers W. Jonckheer P. Ahmadzai N. Ansari M. Carville S. Dworzynski K. et al. What
35	422	are the recommended clinical assessment and screening tests during pregnancy? Good Clinical
36	423	Practice (GCP) Brussels: Belgian Health Care Knowledge Centre (KCE) 2015, KCE Benorts 248
37	474	KCE Reports 2017:248
38	425	23 Vaudry W. Rosychuk RI. Lee BF. Cheung PY. Pang X. Preiksaitis IK. Congenital
39 40	426	cytomegalovirus infection in high-risk Canadian infants: Report of a nilot screening study. The
41	427	Canadian journal of infectious diseases & medical microbiology = Journal canadian des maladies
42	/28	infectieuses et de la microhiologie medicale 2010:21(1):e12-9
43	120	24 Revello MG, Gerna G. Diagnosis and management of human cytomegalovirus infection
44 45	420	in the mother, fetus, and newhorn infant. Clinical microhiology reviews, 2002:15(4):680-715
45 46	430	Maingi 7 Nyamacha AK, Saraprovalanca of Cytomogala Virus (CMV) among prognant
47	451	25. Walling 2, Nyamache AK. Seroprevalence of Cytomegalo virus (Civiv) among pregnant
48	432	Wolfield III Third, Kellyd. Divic Tesedici Holes. 2014,7.794.
49	433	20. Kolo R, Olioli V, Jalau E, Ella E. Seloprevalence of Cytolinegalovirus antong antenatal
50	434	patients attending primary health centres in some parts of Raduna State, Nigeria. SAJEB.
51	435	2013;3(1):43-8.
53	436	27. Jin Q, Su J, wu S. Cytomegalovirus infection among Pregnant Women in Beijing:
54	437	Seroepidemiological Survey and Intrauterine Transmissions. Journal of microbiology and
55	438	biotechnology. 2017;27(5):1005-9.
56		
57 58		
59		24
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-051390 on 21 October 2021. Downloaded from http://bmjopen.bmj.com/ on May 25, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1		
2 3		
4	439	28. Yeroh M, Aminu M, Musa B. Seroprevalence of cytomegalovirus infection amongst
5	440	pregnant women in Kaduna state, Nigeria. African Journal of Clinical and Experimental
6	441	Microbiology. 2015;16(1):37-44.
7	442	29. Aljumaili ZKM, Alsamarai AM, Najem WS. Cytomegalovirus seroprevalence in women
8 Q	443	with bad obstetric history in Kirkuk, Iraq. Journal of infection and public health. 2014;7(4):277-
10	444	88.
11	445	30. Wang C, Dollard SC, Amin MM, Bialek SR. Cytomegalovirus IgM Seroprevalence among
12	446	Women of Reproductive Age in the United States. PloS one. 2016;11(3):e0151996.
13	447	31. Fowler KB, Pass RF. Risk Factors for Congenital Cytomegalovirus Infection in the
14 15	448	Offspring of Young Women: Exposure to Young Children and Recent Onset of Sexual Activity.
16	449	Pediatrics. 2006;118(2):e286-e92.
17	450	32. Cannon MJ, Hyde TB, Schmid DS. Review of cytomegalovirus shedding in bodily fluids
18	451	and relevance to congenital cytomegalovirus infection. Rev Med Virol. 2011;21(4):240-55.
19	452	33. Pass RF, Hutto C, Ricks R, Cloud GA. Increased rate of cytomegalovirus infection among
20	453	parents of children attending day-care centers. The New England journal of medicine.
21	454	1986;314(22):1414-8.
23	455	34. Hyde TB, Schmid DS, Cannon MJ. Cytomegalovirus seroconversion rates and risk factors:
24	456	implications for congenital CMV. Rev Med Virol. 2010;20(5):311-26.
25	457	35. Tookey PA, Ades AE, Peckham CS. Cytomegalovirus prevalence in pregnant women: the
26	458	influence of parity. Archives of disease in childhood. 1992;67(7 Spec No):779-83.
27	459	36. Pitlick MM, Orr K, Momany AM, McDonald EL, Murray JC, Ryckman KK. Determining the
29	460	prevalence of cytomegalovirus infection in a cohort of preterm infants. Journal of neonatal-
30	461	perinatal medicine. 2015;8(2):137-41.
31	462	37. Shakya S. Thingulstad S. Syversen U. Nordbø SA. Madhup S. Vaidya K. et al. Prevalence
32	463	of Sexually Transmitted Infections among Married Women in Rural Nepal. Infectious Diseases in
33 34	464	Obstetrics and Gynecology, 2018:2018:4980396.
35	465	38. Staras SA. Flanders WD. Dollard SC. Pass RF. McGowan JF. Jr., Cannon MJ. Influence of
36	466	sexual activity on cytomegalovirus seroprevalence in the United States, 1988-1994, Sexually
37	467	transmitted diseases 2008:35(5):472-9
38	468	39 Adachi K. Xu I. Yeganeh N. Camarca M. Morgado MG. Watts DH. et al. Combined
39 40	469	evaluation of sexually transmitted infections in HIV-infected pregnant women and infant HIV
41	470	transmission PloS one 2018:13(1):e0189851
42	170	
43	471	
44 45		
45 46		
47		
48		
49		
50		
51 52		
53		
54		
55		
56		
57		
20		25

59

Page 27 of 27

	STR	거, 역 것 OBE 2007 (v4) Statement—Checklist of items that should be included in reports of cress-sectional studies	
Section/Topic	ltem #	Recommendation	Reported on page
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Obiectives	3	State specific objectives, including any prespecified hypotheses	5
Methods	-		-
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposured follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modified. Give diagnostic criteria, if	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which are chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	7

 GEZ-LTA

		BMJ Open by copyrig	Page 2
Participants	13*	a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed 같 요	9
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram 5	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information of the posures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their presisent (eg, 95% confidence	13
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning further period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analy 🛃 🛱	
Discussion		ning m T	
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-18
Generalizability	21	Discuss the generalisability (external validity) of the study results	18
Other information		ar tr	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-sectional studies. <u>a</u>

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine are realized of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.s gobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml